
 

Meet Edison 

The Intel Edison is remarkable because it is small, uses little power and yet has a lot of computing in a tiny SD 

card-sized board. It is a core component in Intel's Internet of Things (IOT) initiative where it has a large role to 

play. 

At around $50 an Edison it isn't as cheap as an Arduino or a Raspberry Pi, but it has enough advantages over both 

to make it a sensible choice for many applications. Also, when you include the cost of the extras needed to provide 

WiFi and Bluetooth for the other two, then it is price comparable. More to the point there are situations where its 

small size and low power consumption make it the only sensible choice. 

However, the Edison is a little different from the alternatives and you need to know a little more about its 

characteristics and the best ways to make use of it depending on what you are trying to achieve.  

In this first chapter of Exploring Edison  we take a look at the general details of the Edison in comparison to two 

alternatives you may already be familiar with. In looking at each device we'll consider when and why it might be 

an appropriate choice. 

Contrast And Compare 

First some basic facts - missing out a lot of fine detail: 

1) Arduino Uno 

 

The key feature of the Arduino is that it is simple but very expandable. It doesn't have a full operating system and 

it doesn't have a video/keyboard interface. It supports a range of digital and analog I/O as standard.  

It is programmed with the help of another machine via a USB connection.Once programmed it can run standalone. 

If you want to use a network, WiFi or Bluetooth then you need an expansion board - a Shield - and a suitable 

library. The Arduino doesn't have the processing power to handle complex protocols and do something else at the 

same time. 

2) Raspberry Pi 

http://network.bemyapp.com/trk/2DA997D15C677D8827896491561BC02B


 

The Pi is a full computer that just happens to have a GPIO interface that you can use to control the real world. It 

has a video display and keyboard interface and you can use it standalone just like any machine - though it is 

common to use another PC to configure and program it via a remote console or desktop. 

It is good at networking because it has Linux support for it. However, you need to buy add-on USB WiFi or 

Bluetooth dongles if you want to use either. It also only has digital I/O unless you buy an expansion board for 

Analog I/O. 

3) Intel Edison 

 

The Edison is a full computer, but without a video or keyboard interface. This means you have to work with it via 

a remote console - either connect via a serial/usb or network connection. Connections to the outside world can be 

via the built in WiFi, BlueTooth, serial port or USB. Even though it runs Linux it doesn't have a desktop 

environment only a command line. 

It has 40 digital GPIO connections, but no analog I/O.  No analog I/O might sound like a problem but for such a 

small form factor this isn't surprising.   

All of the devices connections are made via a tiny 70-pin I/O connector. If you are used to wiring jumper wires 

directly to a Raspberry Pi or to an Arduino you will need to think again. The connector is intended not for direct 

connection but to connect to another PCB. For prototyping you need to use a breakout board and for a finished 

product you would create a custom board. 

If you plan to use a prototype as a one off finished device then you need to keep in mind that the need for a 

breakout board increases the size and cost.  

The Edison Architecture 

You can see the general structure of the Edison in the diagram below: 



 

You can see that the dual core 500MHz Atom processor has access to memory, WiFi, Bluetooth LE, USB and to 

the GPIO. You can write programs that work with all of these facilities. The Atom generally runs Yocto Linux 

which you can treat as a fairly standard Linux for most of the time.  

In fact the structure of the Edison is  little more complex than this would suggest as there is a second processor on 

the board - an MCU Micro  

One little appreciated feature of the Edison is that it has two separate processors - the Atom Host CPU and a Quark 

processor acting as an MCU Microprocessor Control Unit.  

The MCU is a separate small CPU that handles the interfacing with the outside world. Most of the time you can 

ignore it because the main Atom CPU talks to it on your behalf. The dual core Atom runs the Linux OS and the 

MCU is the microcontroller in the system running its own RTOS derived operating system. The MCU is a full 32 

bit Intel Quark microcontroller running at 100MHz, which makes it more powerful than your average 

microcontroller.  

  

  

Until recently the SDK didn't provide access to the MCU. Instead the host CPU was the only thing you could 

program and so all Edison programs accessed the GPIO via programs written on the Atom processor running 

Linux. Now you can also write programs for the MCU that work with the GPIO lines without the need to involve 

the host CPU. What this means is that you can now use the MCU to preprocess the data and allow the Host to get 

on with higher level tasks.  

For example, a slightly contrived example would be that the MCU could be programmed to pulse a line in morse 

code corresponding to each letter of the alphabet. The Host processor could then simply pass the character to the 

MCU and expect it to get on with the task of sending the morse code.  



The division of labour here is typical of the way the Host and MCU can be used together. Of course not all, indeed 

not many applications need this sort of division of labour and in the main you can mostly concentrate on 

programming the host.  

  

So which system for which applications? 

1. The Arduino is good for projects that involve a lot of digital and analog I/O and minimal communication and 

where size and power requirements are not an issue. It is not low power as standard but there are variants suitable 

for special purposes such as wearables. 

2. The Raspberry Pi is really a full computer with good communications. Use it when you need to do complicated 

things, especially if they need screen and keyboard and just basic digital I/O. 

3. The Edison is also a full computer but without video and keyboard interfaces. If has WiFi and Bluetooth as 

standard and so is good at communication.  Its low power makes it suitable for battery operation.  

Of course these are greatly simplified design criteria and in any case there could be a requirement that makes a 

particular device suitable that we haven't considered.  

However, the Edison is clearly a great choice if you are looking for a lot of computing power and connectivity in a 

low power package.  

There is just one complication - the breakout board - and in particular which breakout board. 

Standard Breakout Boards 

The Edison has 40 GPIO connections - some of which have special roles like acting as a serial interface or a 

interfacing to an SD card. 

In a finished product you would wire directly to the 70-pin connector via your custom breakout board, but for 

prototyping you need something to give you access while you experiment.  

  

The 70-pin connector brings out the GPIO lines, a USB port and the power lines.  As already mentioned 

the  connector is very small 70-pin Hirose DF40  and with 0.4 mm contact pitch it is very difficult to solder to 

directly. 

 

The solution is to use a breakout board which accepts the Edison and provides power and other facilities.  



It is worth mentioning at this early stage that the Edison uses 1.8V logic so you can't simply attach an LED say and 

expect to toggle it on and off. The problem of converting the 1.8V logic levels to something more familiar is 

something that a breakout board can tackle. 

There are two standard breakout boards from Intel and a number of similar ones from other sources - for simplicity 

let's look at the Intel boards. 

Arduino Breakout 

The first is the Arduino breakout board. 

This as its name suggests takes the GPIO connections from the Edison and converts them both electrically and 

physically to the outputs you would find on the Arduino. So exact is this mapping that you can actually use 

Arduino shields to expand the Edison. 

 

  

When installed on an Arduino breakout board the Edision looks a lot like the Intel Galileo but with WiFi.  

This similarity between the Edison+Arduino board and Galileo explains why you will often find software and 

documentation covering both - however there are some differences, such as the WiFi. 

In most cases what works for the Galileo should work with the Edison plus Arduino breakout board. 

  



The Arduino breakout board is easy to use. Especially so if you already have Ardunio experience. The reason is 

that one of the possible programing environments for the Edison is the Arduino IDE which allows you to write 

programs as if you were working with a real Arduino.  

That is the Arduino breakout board allows you to treat the Edison as if it was an Arduino for much of the time - for 

both hardware an software. It also provides lots of extras that make getting started with the Edison easier. In 

particular it provides logic level translation from 1.8V to the more familiar 5V. This allows you to directly connect 

and flash LEDs and use the sensors output devices that you might well be familiar with. 

Of course if you are thinking of creating a custom device based on the Edison then the Arduino board may present 

you with a small problem. It implements electronics to convert the Edison's GPIO to the Arduino pin out. If you 

want to move on from using the breakout board then you are going to have to duplicate any of the electronics on 

the breakout board that supports Arduino features that you want to use that aren't native. For example if you make 

use any of the AtoD converter pins then you have to implement one on your custom board. 

This isn't as difficult as it sounds because Intel have provided that full schematic of the Arduino breakout board 

and you can use this as the basis for your own. 

Edison (Mini) Breakout 

Using the Edison as an Arduino has lots of advantages but there are times when the project you have in mind 

really doesn't need the fairly elaborate hardware that is used to implement the Arduino pin outs. In these cases it is 

better to make use of the much smaller Edison Breakout board - sometimes called the "mini breakout" board. 

You can see from a block diagram this is a very much simpler breakout board than the Arduino board: 

  

 



  

While the USB and power have some electronics dedicated to making them easier to use, the GPIO lines are 

brought out directly to a 0.1 inch header. Notice that you don't actually get any pins to connect to just the solder 

pads. How to deal with this is something discussed in later chapters. Also notice that there is no SD card - if you 

want to support an SD card you have to add some electronics to the SD lines available on the header.  

The board is also much smaller than the Arduino breakout and more in keeping with the whole Edison ethos: 

 

  

In summary: 

the mini breakout board has all you need to power and talk to the Edison but it makes no effort to convert the 

Edison GPIO to anything at all. What you do get is the large header space on the bottom of the board. This is very 

easy to work with and you can make connection to a prototype board via jumper wires.  

What you do with the signals next is up to you, but it is worth mentioning again that the native logic level for the 

Edison is 1.8V and its current drive is just 3mA. In other words, these are not TTL or CMOS levels of the sort you 

encounter in the Arduino and the Raspberry Pi. 

For example, you can't just connect an LED to a pin and expect to be able to switch it on and off - the voltage is 

too low and there isn't enough drive current. It might work if you are lucky to use an LED with a low drive 

demand but you cannot rely on it.  

If you want to use a 5V sensor then this low voltage logic makes things more difficult, but many modern sensors 

use, or can use, a 1.8V logic level. The advantage of working with such low voltages is that the sensors and other 

devices use a lot less power. If you do want to use your favourite 5V sensor or output device then you are going to 

have to get used to implementing level shifting and drivers and this is something we have to tackle. It turns out to 

be not a huge problem and once you have settled down with 1.8V logic it is as easy to live with as TTL or CMOS 

levels.  

You can also use the Arduino IDE to develop software using the Arduino IDE for the mini breakout board. 

However in most cases it makes more sense to program your applications using C or Python, or even JavaScript 

and leave the Arduino behind. You can use these languages with the Arduino IDE and move your programs over 

to the mini breakout board very easily. In this way you can develop your code and be sure it works before you 

have to implement the custom hardware needed to make the mini breakout board work properly.  



For example if you want to create a new serial protocol using a GPIO line then you can use the Arduino board as a 

level shifter to 5V and develop your software. Then knowing it works you can move to the mini breakout board 

and implement a 5V level shifter. If you use any of the features of the Arduino board such as the AtoD converters 

then again you can be sure you software works and all you have to do is implement an AtoD in hardware for use 

with the mini breakout. 

In short the Arduino breakout board makes a good test bed for your mini breakout projects, which in turn makes a 

good test bed for your final production device.  

Which Breakout? 

So which breakout board to start with? 

 If you don't want to be troubled by hardware complications start with an Arduino breakout board.  

This not only gives you Arduino pin outs, but it level shifts the 1.8V logic of the Edison to the 5V logic of 

the Arduino. You can also use the full Arduino IDE to develop software.This means you can use all of the 

interfacing techniques you have learned in using the Arduino and Arduino projects are easy to move to the 

Edison.  Judging by comments on forums, this seems to be, the route that most users are taking and hence 

there is more information available.   

However you think the Arduino board is for you you need to ask if a simpler solution might not be an 

Arduino proper. In most cases the Arduino board is best regarded as a stepping stone to the mini board.  

 if you can handle the minor complications involved in level shifting and generally working with 1.8V logic 

and want to create something small and low power then the mini breakout board is for you.  

However, you are going to have to implement any additional I/O facilities you need as the mini breakout 

board only provides you with the raw GPIO lines.  This is not the big problem that it might appear to be 

and in fact in no time at all you should find it easy to not only use new 1.8V sensors when they are 

available but to interface to your favourite 5V and 3.3V devices including bidirectional devices.  

  

Where Next? 

Rather than concentrate on the Arduino breakout board which is what most accounts of getting started with the 

Edison do we are going to work with both breakout boards. 

This is possible because initially at least they are very similar and use the same low level software.  

When we move on to consider simple interfacing - flashing an LED or interfacing to a 1-wire bus - then we will 

have to deal with the problems of the mini breakout and its 1.8V logic levels. The good news is that the software is 

more or less still the same in both cases.  

If you want to learn the software aspects of the Edison without worrying too much about electronics then get an 

Arduino breakout board. If you want to really utilise the Edison's special qualities then get the mini breakout.  

If you want to follow along, get an Edison plus either breakout board and meet me back here soon.  

 



  

Which Breakout Board 

As explained in more detail in Choosing a Breakout Board, the Arduino breakout board isn't the lightest weight 

option for working with the Edison but it is very capable. It provides lots of I/O expansion, works with more 

familiar logic voltage levels and if you have a working knowledge of the Arduino there is very little extra to learn.  

 

However, the Edison plus the Arduino breakout board isn't exactly an Arduino - it is more than an Arduino 

because it is a full Linux machine as well. So there are many new things to learn. 

The native mini-breakout board is harder to work with in some respects but it is the one you need to master to get 

the real Edison experience.  

 

 

in this chapter of Exploring Edison we work through the ideas need to get started with the Arduino and the mini-

breakout board.  

The mini-breakout board is the one that brings out the true nature of the Edision but the Arduino board is useful 

for checking that software works and gaining access to extended I/O without having to implement any special 

hardware.  

The Hardware 

Setting up the Edison with either of the Intel breakout boards is fairly straightforward and there isn't much that you 

have to do.  

http://www.i-programmer.info/programming/hardware/8198-exploring-edison-meet-edison.html?start=1
http://network.bemyapp.com/trk/E5270C43B5DD41171C866E17399D14A5


Get the Edison and plug it into the breakout board. Fix it into place using the nuts provided if you don't plan to 

remove it often.  

For the Arduino board you can also screw in the plastic spacers if you really feel the need to. They only serve to 

lift the board up from the working surface. 

The next step is to find two USB cables (Micro B to A) or one USB cable and a power supply. When you are 

getting started it is probably easier to use the two USB cables as this powers the Edison and gives you access to its 

internal storage and other facilities.  

At this point the question arises of why two cables.  

The answer is that the breakout boards both have two USB connectors. 

One of the connectors - the one on the inside - is a true USB port. 

The other - the one on the edge - is a serial interface converted to be a USB port.  

  

You can see the USB connections at the bottom of the block diagram on the Arduino breakout board. 

  

and the two USB connections on the mini-breakout board: 

 



  

The true USB port can be used to power the system and it allow you to make a connection for doing things like 

downloading software and access the Edison's internal storage.  

The Serial USB port is used to connect a serial console so that you can "talk" to the Linux operating system.  

In practice you avoid using one of the two USB connections but when you are starting it is best to just make use of 

them for simplicity of getting started. 

The only thing you have to make sure of on the Arduino board is the position of the micro switch between the big 

USB A socket and the micro USB socket is pushed over towards the micro socket.  

The big A socket and the micro USB socket share the same USB port and the switch selects which one is active. 

The A socket allows the Edison to be a host and power and control other USB devices. The micro socket is always 

a client. 

  

On the mini-breakout board the sockets are easy to find: 

 

  

On the Arduino board they are also fairly obvious: 

 

  

So all you have to do is plug two USB cables into the breakout board and into a suitable computer.  



If you do this you should see a green LED next to the Edison light up to indicate that power is on.  

Depending on the OS you are using various drivers may have been automatically installed or you may have install 

them manually.  

One thing that does get installed automatically on all systems is the Edison's internal drive. If everything is 

working you should be able to see an additional drive labeled "Edison" in what ever file manger you are using. 

Let's deal in detail with the serial port first and start talking to the on board Yocto Linux. 

At this stage you can more or less ignore the other USB socket and just treat it as a way of supplying power. You 

don't even have to install drivers for it until you want to make use of it.  

The Windows 64 bit And Mac Integrated Installer 

If you are using Windows 64 bit or a Mac to develope Edison programs then there is a very easy way to get all of 

the drivers and software installed in one step - the Windows 64-bit Integrated Installer or the  Mac OS X installer 

If you run this you will install all the drivers described below in one operation and update the Edison's Linux 

image to the latest version. You can also optionally install all of the standard development IDEs.  

If you use either Integrated Installer then you can still follow the steps decribed below but you wont have to 

download any of the drivers - you can just start using them - and you wont have to update the Linux image because 

this has already been done for you. 

The Integrated Installer takes some time to do its job so be patient. If it doesn't work, i.e. if it hangs or fails at some 

point then simply run it again.   

The Serial Port 

The Edison's serial port is the way you connect a console with the Linux OS running on the device.  

As the serial port is converted by the breakout board to a USB connection you need a USB serial driver installed 

on your PC.  

If you are using Linux the USB serial port will be set up automatically as /dev/ttyUSB0. 

  

If you are using OSX it will be set up automatically in /dev/tty. To find out which device it is use  

ls /dev/tty.* 

and look for a device that has cu.usbserial in its name, for example: 

tty.usbserial-A402YSYU 

  

Under Windows you will need to install a USB serial port driver. To do this either run the Integrated installer or 

download the FTDI driver,  run the installer with admin privileges, use run as administrator. You should discover 

that a new USB Serial Port has been added. Use the device manager to discover its port number - usually USB 

Serial Port (COM3). If you have installed other drivers, e.g. using the Integrated Installer you will also see a USB 

Composite Device - ignore this for the moment, the port that you want is usually listed as USB Serial Port. 

http://downloadmirror.intel.com/24738/eng/iotdk_win_installer.exe
http://downloadmirror.intel.com/25028/eng/iot_dev_kit_2015.0.007.tar.gz
http://www.ftdichip.com/Drivers/CDM/CDM%20v2.10.00%20WHQL%20Certified.exe


  

Next all you have to do is use a serial console to connect to the Edison. You can use any serial console to connect 

and the only thing you need to know is that the baud rate is 115200. 

Under Linux and OSX you can use screen. Under Linux you might have to  install it using: 

sudo apt-get install screen 

and then run it using: 

sudo screen /dev/ttyUSB0 115200 

  

Under OSX run the screen terminal using: 

screen /dev/devname 115200 -L 

where devname is the serial device you found earlier. 

If you are using Windows then things are a little more difficult. You need a serial console but Windows 7 and later 

no longer come with one as standard. The simplest solution is to download Putty. This is a very useful program as 

it not only works as a serial terminal but as a Telnet and SSH console. It is worth getting to know. Just download it 

and run the .exe file. There is no installation.  

To use it to connect to the Edison simply run it and select serial connection. Enter the port that corresponds to the 

USB serial connectiorootn and set the speed to 115200: 

  

 

  

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


You can save these details to make connecting easier in future. If it doesn't work, the only possible reasons are that 

you have the wrong com port or the wrong speed - the speed has to be 115200 and you can find the com port by 

trial and error if needs be.   

No matter how you connect to the serial port, the next step is the same for all three operating systems. You might 

have to press carriage return twice to wake the session up, but you should then see the Yocto Linux sign-on 

banner. 

All you have to do is log in with the user name "root". 

  

 

  

At this point you have made contact with the Edison and are working with the Linux operating system that it ships 

with. 

In theory your next task is to up-date its firmware to make sure you are working with the latest version, but if you 

know some Linux commands you could have a look around the system first.  

Updating the system 

This is something you have to do before moving on. The latest version of the OS is essential if you are to be sure 

that things are going to work as documented. 

If you have installed the software using the Integrated Installer for Windows 64bit then the OS image will have 

been updated for you and you can skip to the next section. However you will probably want to update the system 

again in the future and if so you can follow these instructions. 

Upgrading firmware is something that sounds difficult and it can be worrying. In the case of the Edison, however 

it is very simple. All you have to do is copy the operating system image to the shared drive and then tell the Edison 

to reboot.  

Taking this step by step: 

1. Download the latest image - Edison Yocto complete image. Unzip this to a local directory on your 

machine.  

2. Navigate to the Edison drive and erase anything it contains and then copy the contents of the directory you 

have unzipped. Note: don't copy the single folder. The Edison drive should end up with lots of files (32 at 

the moment) in its root directory.  

3. Finally make a serial connection to the Edison, if you don't already have one, and give the command  
reboot ota 

i.e. reboot and perform an "over the air" upgrade.  

The system should shut down and then reboot once to read the new image files and then once more to load the new 

operating system. That is, if all went well you should see the Edison boot twice.  

https://communities.intel.com/docs/DOC-23242


When you are finished you can delete all the files you copied to the Edison drive ready for the next time you want 

to transfer something to the Edison.  

You can also use the Integrated Installer to update the firmware by running it again and selecting that option.  

The prefered Intel way of doing the job is to download Flash Tool Lite. This has to be installed. To use it you 

simply download the image as in step 1 but don't bother to unzip it. Run the Flash Tool and use the browse button 

to specify the zipped image file you downloaded. Make user the Edison is connected. The Flash Tool will unzip 

the system image and when you click Start Flash it will upload the image to the Edison. However it will ask you to 

unplug and plug the Edision back in so as to reboot it.  

Setting Up WiFi 

Once you have the latest version of the operating system installed, your next task is to connect to WiFi. You need 

to do this because, before you start to make use of the Edison to control anything or read any sensors, you need to 

up-date a critical library that, for some reason, isn't always up to date in the "latest" OS image. 

This isn't so important for the Arduino breakout board, but it is essential to to the working of the mini breakout 

board. 

If you don't have a WiFi network to connect to then you can use the USB port, which we haven't configured as yet, 

to make a network connection - see later. 

Connecting to WiFi is very simple. Just use the command 

configure_edison --setup 

and supply the information the utility requests. 

You have to provide a unique name for the device and you can optionally set a logon password.  

It if fairly important that you do supply a logon password because without one you can only SSH to the Edision 

via the serial port or the network over usb connection. This means you cannot connect an SSH terminal or FTP 

client via WiFi. To allow SSH connections on all ports you have to either supply a password or manually alter the 

configuration.  

When set up the WiFi a scan is performed and you'll see this displayed on the screen: 

 

Configure Edison: WiFi ConnectionScanning: 1 seconds left0 : Rescan for networks 

1 : Manually input a hidden SSID 

2 : MyNetwork 

Enter 0 to rescan for networks. 

Enter 1 to input a hidden network SSID. 

Enter 2 to choose MyNetwork: 

All you have to do is enter the number corresponding to the network you want to connect to. You then have to 

provide the network's password and, if all goes well, you will see a message telling you the IP address and how to 

access the device: 

Done. Please connect your laptop or PC to the same network as this device and go to http://192.168.11.25 or 

http://Edison1.local in your browser. 

When you get to the web page all you will see is confirmation of the IP address and name.   

https://software.intel.com/en-us/iot/hardware/edison/downloads


  

  

What really matters is that you have managed to get the Edison connected.  

You can rerun the configure_edison utility any time you want to change the configuration.  

Updating lib mraa 

The mraa library is going to be very important, but it gets upgraded faster than the OS at the moment. You need to 

install the latest version before trying anything out. In particular, the mini-breakout board doesn't work unless you 

update to the current version..  

Fortunately it is a fairly easy procedure. However for it to work you have to have connected the Edison to the 

Internet one way or another. Then copy and paste the following at the Linux command prompt: 

1. echo "src maa-upm http://iotdk.intel.com/repos/1.1/intelgalactic" > /etc/opkg/intel-iotdk.conf 

2. opkg update 

3. opkg upgrade 

For future reference opkg is the Yocto Linux package manager.  

Following the upgrade all of the examples that follow should work.  

If you download and install a new OS image then you have to check that the version of Mraa you have is the very 

latest. 

The simplest way to discover the version of Mraa you have installed is to use Python, or the language of your 

choice to call get_version. 

To do this give the command 

python  

Then in the Python REPL that appears type: 

import mraa 

and finally 

mraa.getVersion() 

Which will display something like: 

'v0.5.4-110-g459ecc0' 

You can compare this to the latest version listed on GitHub -https://github.com/intel-iot-devkit/mraa/releases 

https://github.com/intel-iot-devkit/mraa/releases


Note the current version at the time of writing is 7.2 and there are updates every few days. 

Pulse A Pin 

We are going to have to spend time getting a development environment set up, but it is still worth seeing how easy 

it is to control the Edison's GPIO pins. The key to it all is the mraa library, which allows you to access the GPIO 

no matter which of the breakout boards you are using. 

In fact mraa works on a range of other devices including the Galileo and the Raspberry Pi, so it is worth finding 

out about. It is a C/C++ library but it can also be used from Python or JavaScript. 

To get us started, to check that everything is working, and just for a general confidence boost, we can work 

interactively in Python and flash an LED manually. 

I say "flash an LED", but there is only a real LED to flash on the Arduino breakout board. On the mini breakout 

board all we can do, without adding some components, is check the voltage level on one of the outputs.  

First, we have to say something about how to determine which pin number corresponds to which physical pin. 

Mraa uses a standard set of pin numbers which are mapped to appropriate pins on different devices - there is a lot 

more to say about this, but all you need to know at the moment is that mraa pin number 13 is mapped to on the 

Arduino breakout board to Arduino pin 13, which has an LED connected, and to pin J17-14 on the mini breakout 

board.  

You don't need to find the pin on the Arduino breakout board because if everything works you will see the LED go 

on and off.  

Finding the pin on the mini breakout board is easy because the pin rows are labeled and pin J17-14 is the far left 

pin on the top row looking at the bottom of the board: 

  

 

  

The simplest way to make sure that the pin state changes is to use a multimeter - if you don't have one get one at 

once, they are cheap and essential. You can make a ground connection using the through-plated mounting holes. 

Remember the logic levels are 0 and 1.8V and you will see zero when the pin is set to zero and 1.8 when it is set to 

1. Also be careful not to short other pads or tracks on the PCB with the multimeter probes.  

Programming the Edison 

Now to the software. Open a serial connection and log in if you need to. To get the Python interpreter running 

simply type  



python 

you should see a three-arrow >>> prompt appear. You can now type in any Python commands and they will be 

obeyed at once.  

To load the mraa library use: 

import mraa 

if you see any error messages then the chances are that your mraa library isn't up-todate -see above.  

Next we need to create a pin object: 

x = mraa.Gpio(13) 

and set it to be an output 

x.dir(mraa.DIR_OUT) 

Now we can switch the pin to high: 

x.write(1) 

If you are using the Arduino breakout board you should see the LED connected to pin 13 come on.  

If you are using the mini breakout board you should measure 1.8V on pin J17-14. 

To set the pin low use: 

x.write(0) 

and the LED should go off and the voltage on pin J17-14 should drop to 0V.  

That's all there is to it.  

You now have a working connected Edison and you can program its GPIO pins.  

Of course, there is a lot more to find out and master.  

Summary 

1. The Edison breakout boards have two USB connectors - one supplies power and other services and the 

other is a serial port allowing you to connect to the OS. 

2. No matter which breakout board you are using connect both USB sockets to your host machine using 

suitable cables. 

3. Even without additional drivers all host machines should recognise the shared flash drive in the Edison as a 

hard disk with the device name Edison. 

4. You can connect to the Edison using a serial console of your choice. Linux and OS X should have a 

suitable console and drivers for the USB port already installed. 

5. If you are using Windows you need to download a USB Serial driver and a suitable serial console - Putty is 

probably the one to use. 



6. Once you have made a serial connection you can log on to Yocto Linux using the user name "root" with no 

password.  

7. It is important that you upgrade the OS to the latest version. Simply download the OS image and copy it to 

the shared drive. Then restart the Edison using reboot ota. The Edison will restart twice before the 

update is complete. 

8. Use configure_edison --setup to connect to WiFi. 

9. It is important to update the mraa library. Without the latest version things tend not to work.   

10. With the upgraded mraa library you can now use C/C++, Python or JavaScript to control the Edison's 

GPIO.  

You are now ready to start building programs.  

Exploring Edison - In C  

You have a choice of languages that you can use with the Edison, but there are big advantages to choosing C or 

C++ for bigger projects. If you know Python or JavaScript then you will find it very easy to make the switch. So 

let's do it in C. 

 

 

Before we get started, it needs to be made clear why it is worth learning how to use the Edison in C. You can use 

languages such as Python and JavaScript and I have a great fondness for both. The reason for introducing another 

option is not about liking what you know - it is to do with efficiency. All of the system software on the Edison is 

written in C and Linux is written in C. What this means is that C programs have a direct and uncomplicated 

connection to the system software. This makes C programs simpler and faster and if you are writing an application 

using embedded hardware then speed is usually an issue.  

As well as speed, there is also the issue of timing. For many applications you have to be able to create a pulse of a 

known duration and within a specific time slot. The standard approach to Edison programming, i.e. using the Atom 

processor, isn't good enough for this task because Linux isn't a real time operating system and this introduces 

uncertainties into pulse timing. In situations such as these you have little choice but to move to programming the 

second CPU on the Edison board - the MCU. The MCU can, at the moment, only be programmed in C so if you 

want to future-proof your investment in the Edison, C has a lot going for it. 

To summarize: 

 C is fast, efficient and gets you close to the hardware 

 You have to program the MCU in C so using it for the main processor as well makes sense. 

Installing Eclipse 



To write programs in C for the Edison the simplest way of working is to install and use the customized version of 

the Eclipse IDE. Eclipse is a well known IDE to Java programmers, but it is modular and can be customized to 

work with other languages. Intel has created a version of Eclipse that can be used to create C programs for the 

Edison and run and debug them very easily. You might outgrow the Eclipse approach, but it is very much the 

easiest way to get started.   

If you have used the Integrated Installer for Windows 64 then one of the options is to install Eclipse. You can 

rerun the installer if you want to add Eclipse to your current setup or if you need to refresh it.  

  

 

  

If there isn't an integrated installer for your OS then you can download Eclipse from the main IoT download 

site:  https://software.intel.com/iot/downloads 

If you have to install Eclipse manually you will need a copy of 7Zip for Windows and you will have to download, 

extract and run the installer. You also need a copy of the Java Runtime Engine because Eclipse is a Java program.  

When you run Eclipse make sure you start it via the batch file devkit-launcher.bat - this is what sets up the 

standard version of Eclipse to run the IoT extensions. If you start Eclipse by running Eclipse.exe then the IDE will 

start but you wont have the IoT extensions installed. The batch file is linked to via the Eclipse icons that the 

installer creates.  

A First Project 

When you first start Eclipse you will see the Intel IoT Developer Kit window. This is where you do everything that 

is specific to programming the Edison. If you need to see the IoT Developer Kit at any time just use the command 

Help,Intel IoT Developer Kit and the window will open. You can also pin the window as a sidebar in Eclipse so 

that you can see it all of the time. 

A good place to start is the Hello World of IoT - blink an LED. In this case all we need to do is slect Create C/C++ 

IoT project and then select On board LED blink C and call the project LED or whatever you would like to call it. 

  

http://network.bemyapp.com/trk/BA77B143BD7BEAD5CFD20328DCB17957


 

  

  

At this point you might be a little puzzled as to what "On board LED" means. After all the mini-breakout board 

doesn't have an on board LED but the Arduino breakout board does. There are very few examples of using the 

mini-breakout board but this isn't a huge problem as we shall see.  

Don't click Finish, instead click Next. You have to tell Eclipse how to connect to your Edison so that the program 

can be downloaded and run.  All you have to do is enter the IP address of the Edison. If you have setup the WiFi 

then this connection will do the job perfectly, but there are other ways to connect an Edison to the Internet and 

these all work as well.  

Enter the IP address, a name for the connection and a description if you want to: 

  



 

  

At this point you could start programming, but it is worth checking that you do have a connection. This is also an 

opportunity to discover how to edit and make use of connections.  

Remote Systems 

At the bottom of the work areas you will see a Remote Systems tab. This is where the connections to the Edison 

and other machines are stored. If you click on the tab you should see the connection you created as part of the new 

project.  

  

  

If you right-click on the connection Edison WiFi you can select properties and edit its name, IP address etc. One 

thing you often have to change is the Default User Id which generally defaults to the name of the host user not the 

Edison user: 



  

 

  

You can right click on any of the sub-items under the connection and select the connect option. You can use the 

Sftp connection to work with the Edison's file system. To check that you have a connection the simplest thing to 

do is right click on the Ssh terminals icon and select launch terminal. After you supply a password you should be 

able to use the terminal to work with Yocto Linux in the usual way.   

  

 

If you can't connect to the Edison via a terminal you won't be able to compile and run a program. So if it doesn't 

work you need to debug the connection before moving on. The only possibilities are that the Edison is setup for 

WiFi, you have the wrong IP address or you didn't set a password and so SSH isn't enabled on all ports.  

The Program 

Now that we have a connection that works it is time to move to look at the program.  

One of the big problems with using the Eclipse IDE is that the templates for the programs are limited, generally in 

C++ rather than C and  specialized to the Arduino breakout board or some other device. For example at the start of 

the template a test is made to see which device is being used. Of course as we are targeting the Edison with the 

mini-breakout board this is redundant code as far as we are concerned. 

If you want to write C for the mini-breakout board then the simplest thing to do is use the LED C template, then 

delete most of the code and start afresh. 



The key to programming the Edison's GPIO lines is the mraa library which is a low level interface to the hardware. 

The procedure to make sure you have the latest copy of the library was described in First Contact, but all you have 

to do is copy and paste the following at the Linux command prompt: 

1. echo "src maa-upm http://iotdk.intel.com/repos/1.1/intelgalactic" > /etc/opkg/intel-iotdk.conf 

2. opkg update 

3. opkg upgrade 

We will look at the details of mraa in the next chapter, but for the moment all you need to know is that to use it 

you have to include its header file at the start of the program: 

#include "mraa.h" 

The steps in using mraa are fairly standard for the mini-breakout board. First you have to initialize the pin you 

want to use: 

mraa_gpio_context pin = mraa_gpio_init(13); 

We are using pin 13 and pin numbering is explained in detail later.  

You can include an initialization of mraa if you want to, but strictly speaking it is unnecessary because the 

function is called when the module is loaded: 

 mraa_init(); 

We next need to set it to be an input or an output - an output in this case: 

 mraa_gpio_dir(pin, MRAA_GPIO_OUT); 

Following this we can set it high using: 

mraa_gpio_write(pin, 1); 

and low using: 

mraa_gpio_write(pin, 0); 

Putting all this together the complete program we need to enter is: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

 

int main() 

{ 

 mraa_gpio_context pin = mraa_gpio_init(13); 

 mraa_gpio_dir(pin, MRAA_GPIO_OUT); 

 for (;;) { 

  mraa_gpio_write(pin, 0); 

  sleep(1); 

  mraa_gpio_write(pin, 1); 

  sleep(1); 

 } 

 return MRAA_SUCCESS; 

} 

  

http://www.i-programmer.info/programming/hardware/8252-exploring-edison-setting-up-the-breakout-boards.html


The for loop for(;;){..} provides us with a simple idiom for an infinite loop. The sleep(n) function delays execution 

for n seconds. Hence the program toggles pin 13 high and low every second. As there is no LED connected to pin 

13 you can test this using a multimeter, an oscilloscope or a logic analyser. 

Gpio line 13 is J17 pin 14 on the mini-breakout board - see diagram below: 

  

 

  

To run the program simply select the Run icon (green triangle) at the top of the work area, hit Ctrl-F11 or use the 

Run,Run menu item. The program will be compiled, downloaded to the Edison and run. You should see the 

voltage varying on the pin.  

If you have a compilation error, check the program, correct the error and try again.  

If you have an error that says that the program couldn't be downloaded then the chances are that the Run 

configuration is using the wrong connection. Use the command Run,Run Configuration and make sure that the 

Connection field is showing the correct connection to the Edison - the one you tested in the previous section.  

  

 

  

  

To check the running of the program you can select the Console tab at the bottom of the work area. You should 

use the red square icon to stop the program before trying to run it again after making any changes.  

  



 

If you forget to stop the program running before you try running it again, you will discover that while it will 

compile it won't upload. You will see the error message something like: 

  

 

Note: the project/program is called LED in this case. 

  

The solution to the problem is to launch a terminal: right-click on Ssh Terminal in the Remote Systems tab and 

select Launch. Switch to the terminal tab, i.e the terminal that you have just launched, and use the ps command to 

get a list of running processes: 

  

 

  

Somewhere in the list will be a process corresponding to /tmp/LED or more generally /tmp/projectname. Take note 

of the Process ID PID on the far left - 689 in this case and enter the command: 

kill 689 

or the kill PID corresponding to your program. 

This stops your program running and following this you can re-run it in the usual way. 



Notice that what happens when you run a remote program is that Eclipse uploads the complied executable file to a 

the directory /tmp and then runs it. You can change the directory and file name that is used in the Run 

Configuration. 

  

 

  

Also notice that you can enter commands to run before your program is run - in this case the chmod simply sets 

execute permission on the file so that it can be run.  

Debugging 

Debugging a realtime program is very difficult because generally you need to see it working at speed to see what is 

happening and pausing it often doesn't give you the information you need. However Eclipse has a good debugging 

option and it works perfectly well with the Edison.  

You can insert a breakpoint in the program simply by double clicking on the left margin next to an instruction. 

What is a breakpoint? 

It is a location in your program where, when run in debug mode, the program will a pause for you to examine 

the values stored in variables, etc.  

For example to set a breakpoint on the line mraa_gpio_write(pin,0) you simply double-click in the margin and a 

round dot appears signifying a breakpoint: 

  

 

  



Now to see the breakpoint in action you have to click the Debug icon, use the command Run,Debug or press F11. 

If you do this the layout of your workspace changes to show you additional debug windows. 

The program runs but pauses when it reaches the line with the breakpoint - in fact it stops before your breakpoint 

because it automatically breaks on the first line. 

To resume the program simply click the resume icon or use the command Run,Resume or press F8. This will allow 

the program to run to the first manually set breakpoint: 

  

 

  

If you look at the variables window you will see that the pin variable is listed and it has a value shown in 

hexadecimal.  

  

 

  

In a more complex program you can see all of the values of all of the variables and check that they are what you 

expected. 

In the case of an internal value for an mraa_gpio_conext we can see that the pin value isn't null and hence the 

mraa_gpio_init(13) worked.  

You can explore the Run menu for all of the different ways you can resume and single-step through your program. 

They are all fairly obvious and you will soon be using the shortcuts to move through your program checking, what 

is happening at each step.  



To return from the debug workspace to the standard programming workspace simply use the command: 

Window, Open Perspective, C/C++ 

You can add and remove windows to customize a perspective to create a working environment that fits in with 

what you do most often. 

  

  

Summary 

1. C is the most direct and efficient way of working with the Edison's hardware - it isn't a difficult 

programming language and well worth learning. 

2. Download and install Eclipse which is a full function IDE complete with smart editor and debug facilities.  

3. When you create a new project you have to create a connection to the Edison as a remote system - it is 

worth checking that you can connect via a terminal. 

4. C programs, and programs in most other languages make use of the mraa library and it is worth making 

sure it is up-to-date. 

5. The Run,Configuration lets you specify the remote system to download and run the program on among 

other things. If you can't get your program to run check that the remote system corresponding to your 

Edison is selected. 

6. If you forget to stop your program before you start running it again use a terminal to run the ps command 

and then kill the process that corresponds to your program. 

7. You can debug your program simply by using the Run,Debug command.  

8. Set breakpoints and use the variables window to confirm that what you think is happening is really 

happening.  

Where Next? 

Now that you have Eclipse set up and written the equivalent of "Hello World" for the IoT you are ready to find out 

more about mraa and the functions that it offers to control the GPIO. In the next chapter we look at this and the 

tricky problem of getting accurate timings down in the region of microseconds.  

Exploring Edison - Mraa GPIO 

The mraa C library is the most direct way to get in touch with the Intel Edison's GPIO lines. In this chapter we take a look at 
the basic operations of input and output, examine GPIO read/write timing, and learn how to use interrupt handling to 
improve performance when detecting changes in input readings. 

The mraa library is designed to smooth out the differences between hardware. In this case hardware includes the 

breakout board type as well as the CPU. 

The Edison with the Arduino breakout board is complicated because some of the raw pins are used for more than 

one thing - they are multiplexed - and there is a lot of extra hardware connected to the raw pins for analog I/O for 



example. Mraa provides a simple interface to this complicated mess and make it look as if the Arduino "shield" 

I/O lines are simple GPIO lines.  

The mini-breakout board simply delivers the raw I/O lines to the connectors with no processing of any kind. This 

makes the task of the mraa library much simpler. The mraa pin numbers map directly to physical pins on the 

connector and correspond to simple GPIO lines.  

You can argue that the mraa library really only comes into its own when the breakout board needs to be configured 

as well as the raw GPIO lines but as it already exists it is an easy and standard way to work with the native Edison 

hardware. 

In this chapter we take a first look at using mraa to control the GPIO pins as basic input output lines.   

In the next chapter we tackle the problem of making GPIO fast enough to do some "bit banging" that is low level 

protocols implemented in C. To do this we need to look at how to make Linux a "near" real time operating 

system.  

If you know all about the basics of GPIO use including the subtleties of interrupt handling then jump to the next 

chapter.  

Pin Numbering 

The one thing that drives the Edison programmer mad is the different pin numberings in use. Basically there are 

three different pin numberings in use - Arduino, mraa and SYSFS. Of these the SYSFS number can be considered 

the "native" Edison GPIO numbering.   

The Arduino pin numbering corresponds to standard Arduino shield pins. This is not in any way directly connected 

to the Edison GPIO numbering because multiple physical pins are used for different purposes on the Arduino 

breakout board. If you are using the min-breakout or anything that is closer to the real Edison hardware you can 

mostly ignore Ardunio pin numbering. The only time that it might be of concern is if you are trying to convert an 

Arduino sketch into C when you can look up which SYSFS number the pin corresponds to and then use the table 

given later to look up the corresponding mraa number. 

The SYSFS pin numbers are the raw hardware defined GPIO lines that the Edison provides. In many ways you can 

consider these numbers to be reality. Linux exposes almost all external hardware as if it was a file system - 

character oriented like a terminal or block oriented like a disk. The GPIO lines are also provided to the user and 

programmer alike as a file system with each pin corresponding to an I/O stream. You can work directly with the 

GPIO by using Linux file commands and the pin numbering used is the standard hardware derived numbering.  

Finally we have the mraa numbering which has nothing to do with anything as it is intended to provide a 

numbering that is independent of device and breakout board. Why this is an advantage is no entirely clear as most 

embedded programs target a specific platform and usually define things like pin numbers as constants at the start 

of the program. However if you are going to use mraa it is mraa's numbering you need to also use.   

You can see the pin numberings in the table below. Don't worry about Pinmode 1 for the moment. By default we 

are working with the I/O pins setup as Pinmode 0 - more of this later.  

In Pinmode 0 all of the lines are configured as digital I/O lines i.e. pure GPIO lines. In Pinmode 1 some of the pins 

have a special functions like PWM or I2C.   

MRAA Number Physical Pin 
Edison Pin 

(SYSFS) 
Pinmode0 Pinmode1 

0 J17-1 GP182 GPIO-182 PWM2 



1 J17-2 NC 
  

2 J17-3 NC 
  

3 J17-4 VIN 
  

4 J17-5 GP135 GPIO-135 UART 

5 J17-6 RCVR_MODE 
  

6 J17-7 GP27 GPIO-27 I2C-6-SCL 

7 J17-8 GP20 GPIO-20 I2C-1-SDA 

8 J17-9 GP28 GPIO-28 I2C-6-SDA 

9 J17-10 GP111 GPIO-111 SPI-5-CS1 

10 J17-11 GP109 GPIO-109 SPI-5-SCK 

11 J17-12 GP115 GPIO-115 SPI-5-MOSI 

12 J17-13 OSC_CLK_OUT_0 
  

13 J17-14 GP128 GPIO-128 UART-1-CTS 

14 J18-1 GP13 GPIO-13 PWM1 

15 J18-2 GP165 GPIO-165 
 

16 J18-3 GPI_PWRBTN_N 
  

17 J18-4 MSIC_SLP_CLK2 
  

18 J18-5 V_VBAT_BKUP 
  

19 J18-6 GP19 GPIO-19 I2C-1-SCL 

20 J18-7 GP12 GPIO-12 PWM0 

21 J18-8 GP183 GPIO-183 PWM3 

22 J18-9 NC 
  

23 J18-10 GP110 GPIO-110 SPI-5-CS0 

24 J18-11 GP114 GPIO-114 SPI-5-MISO 

25 J18-12 GP129 GPIO-129 UART-1-RTS 

26 J18-13 GP130 GPIO-130 UART-1-RX 

27 J18-14 FW_RCVR 
  

28 J19-1 NC 
  

29 J19-2 V_V1P80 
  

30 J19-3 GND 
  

31 J19-4 GP44 GPIO-44 
 

32 J19-5 GP46 GPIO-46 
 

33 J19-6 GP48 GPIO-48 
 

34 J19-7 RESET_OUT 
  

35 J19-8 GP131 GPIO-131 UART-1-TX 

36 J19-9 GP14 GPIO-14 
 

37 J19-10 GP40 GPIO-40 SSP2_CLK 

38 J19-11 GP43 GPIO-43 SSP2_TXD 

39 J19-12 GP77 GPIO-77 SD 

40 J19-13 GP82 GPIO-82 SD 

41 J19-14 GP83 GPIO-83 SD 

42 J20-1 V_VSYS 
  

43 J20-2 V_V3P30 
  

44 J20-3 GP134 
  

45 J20-4 GP45 GPIO-45 
 



46 J20-5 GP47 GPIO-47 
 

47 J20-6 GP49 GPIO-49 
 

48 J20-7 GP15 GPIO-15 
 

49 J20-8 GP84 GPIO-84 SD 

50 J20-9 GP42 GPIO-42 SSP2_RXD 

51 J20-10 GP41 GPIO-41 SSP2_FS 

52 J20-11 GP78 GPIO-78 SD 

53 J20-12 GP79 GPIO-79 SD 

54 J20-13 GP80 GPIO-80 SD 

55 J20-14 GP81 GPIO-81 SD 

  

You can see from the table that in the previous chapter we toggled mraa line 13 which is physically J17-14 and in 

Pinmode 0 Edison GPIO-128 as a SYSFS pin. 

 

  

In most cases you can simply use the mraa pin number but if you want to use the Edison Pin number which 

corresponds to the Linux SYSFS pin number you can via the mraa_gpio_init_raw function which accepts SYSFS 

pin numbers. So you can change the init function to: 

mraa_gpio_context pin = mraa_gpio_init_raw(128);  

and still toggle the pin connected to  J17-14. 

The only reason for using SYSFS pin numbers is if you are converting a program written as a shell script. 

Drive Characteristics 

Each GPIO line can be configured as a general purpose I/O line. 

For input the shortest pulse times that are recognized are given as: 

 100 ns for a 50 MHz clock when SoC is in S0 state. 

 260 ns for 19.2 MHz clock when SoC is in S0i1 or S0i2 State. 

 155.5 µs for 32 kHz clock (RTC) when SoC is in S0i3 State. 

In most cases these smallest pulse widths are well below what can be measured using mraa.  

In output mode each GPIO line can supply or sink 3mA. 



Output 

The mraa functions that you need to make use of a pin in output mode are very simple.  

You need 

mraa_gpio_init (mraa_pin) 

mraa_gpio_init_raw (SYSFS_gpiopin) 

To set the pin up using either mraa number or SYSFS number.  

You also need 

mraa_gpio_dir (pin,dir) 

to see the pin to output.  

At its simplest direction is 0 for output and 1 for input but there is an enumeration you can use: 

MRAA_GPIO_OUT = 0  

MRAA_GPIO_IN = 1 

MRAA_GPIO_OUT_HIGH = 2 

MRAA_GPIO_OUT_LOW = 3 

The last two, dir=2 and dir=3 set the line to output and initially high or low use if you need the line to be in a given 

state from the start.  

The only other function that is specifically concerned with output is: 

mraa_gpio_mode (pin, mode) 

The output mode can be any of: 

MRAA_GPIO_STRONG = 0 

MRAA_GPIO_PULLUP = 1 

MRAA_GPIO_PULLDOWN = 2 

MRAA_GPIO_HIZ = 3  

This works with the Arduino breakout board but not with the mini breakout.   

In this case the default is to use a 50K pull up resistor.  

The pullup mode is useful when you are working with devices that might also want to control the line. For 

example if you select pullup mode then the Edison only drives the line low. When the line is set to high the drive is 

switched off and the line floats up to the high voltage (1.8V) via the resistor. If the device connected to the line 

pulls the line down in this mode it will go to 0V even though you have set the output to a high state. 

This is, of course, how simple serial busses share a single data line.  

You can gain direct control over the Edison's output mode and select strong, pullup, pulldown and you select the 

strenght of the pullup or down i.e. you select the resistor value used. However to do this you have to work outside 

of mraa and so this isn't covered here.  

Finally we have: 

mraa_gpio_write (pin, value) 



which sets the line to high or low  

Note that all of these functions make use of the SYSFS method of working with the GPIO. That is they are not 

interfacing directly with the GPIO driver.  

Phased Pulses 

As a simple example of using the mraa output functions lets try to write a short program that pulses two lines - one 

high and one low and then one low and one high i.e. two pulse trains out of phase by 180 degrees. 

The simplest program to do this job is 

  

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

int main() 

{ 

 mraa_init(); 

 mraa_gpio_context pin15 = mraa_gpio_init(15); 

 mraa_gpio_dir(pin15, MRAA_GPIO_OUT_HIGH); 

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_OUT_LOW); 

 for (;;) { 

  mraa_gpio_write(pin15, 0); 

  mraa_gpio_write(pin31, 1); 

  mraa_gpio_write(pin15, 1); 

  mraa_gpio_write(pin31, 0); 

 } 

 return MRAA_SUCCESS; 

} 

Notice that there is no delay in the loop so the pulses are produced at the fastest possible speed.  

Mraa pin 15 is J18-2 and 31 is J19-4. Ground is J19-3.  

Using a logic analyzer reveals that the result isn't what you might expect: 

 

  

You can see that the pulse trains are not 180 degrees out of phase. The top train switches on and the bottom train 

takes about half a pulse before it switches off - the intent is for both actions to occur at the same time. The point is 

that it does take quite a long time to access and change the state of an output line.  

Of course if we include a delay to increase the pulse width then the delay caused by accessing the pin via SYSFS 

is a smaller proportion of the total and the lag isn't so important: 



 

In this case the loop now has usleep(100) delays i.e. 100 microsecond pauses. 

 for (;;) { 

  mraa_gpio_write(pin15, 0); 

  mraa_gpio_write(pin31, 1); 

  usleep(100); 

  mraa_gpio_write(pin15, 1); 

  mraa_gpio_write(pin31, 0); 

  usleep(100); 

 } 

You will notice that the pulses are now nearly 500 microseconds wide and they are changing at what looks like 

nearer to being the same time. 

The point is that when you call usleep(100) you yield the thread to the operating system which might well 

schedule another thread to run - so you usually get a delay that is longer than 100 microsecond. More about how to 

get round this sort of problem in the next chapter.  

There is still a lag, but in many applications it might not be important. In other applications it could be crucial. 

For example, if the two pulse trains were driving different halves of a motor controller bridge there would be a 

significant time when both were high - so shorting the power supply. It might only be for 10 microseconds but 

over time it could well damage the power supply.  Of course, any sensible, cautious, engineer wouldn't feed a 

motor control bridge from two independently generated pulse trains unless they were guaranteed not to switch both 

sides of the bridge on at the same time.  

There are ways of improving on this situation because most of the delays are due to mraa having to make use of 

SYSFS which is slow - see the next chapter.  

Basic Input 

Reading the state of an input line 0 or 1.8V is easy. You set the direction to input and then make use of: 

mraa_gpio_read (pin) 

which returns a 0 if the input is 0 and 1 if it is 1.8V. 

Simple but in most cases input isn't that easy for reasons that have to do with timing.  

The most common use case for input is just reading the state of a switch - open or closed. In other words the input 

line is either high or low according to the relatively slow change of state of the switch. You can read the state of 

such a slow changing line using polling - i.e. a loop that reads the input over and over: 

 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

int main() 

{ 



 mraa_init(); 

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_IN); 

 int in; 

 for (;;) { 

  in=mraa_gpio_read(pin31); 

  printf("switch %d \n",in); 

  usleep(1000*1000); 

 } 

 return MRAA_SUCCESS; 

} 

This reads the state of the line every second, usleep(n) pauses for n microseconds, and prints the result to the 

Eclipse console. If you connect the input line J19-4 to 1.8V J19-2 or to 0V J19-3 then you wil see the output 

change to 1 and back to 0. If you want to use a switch to do the job then you need a circuit something like: 

  

 

Notice that if you speed up the polling loop to take readings more often then there will come a point where the 

printf is the limiting factor. 

Polling for input is a problem in that it often means that you program is tied up doing nothing but polling. This 

doesn't mean that the operating system won't suspend your program, run something else and then restart your 

program. Even with polling you cannot guarantee to respond to a change in an input line within a given time.  

The big problem with polling is that your program can't get on with doing anything else. Sometimes this doesn't 

matter because you need input as fast as possible for a short time. Sometimes it does matter and when it does the 

solution is to use an interrupt.  

Interrupts 

If you know another programming language then you can think of an interrupt as an event and an interrupt handler 

as an event handler. In this case however an interrupt is caused by an external event - like an input line changing 

its value. When the interrupt occurs your specified interrupt handler is called.  

You can also set what actually constitutes an event - the input can be edge-triggered from low to high or from high 

to low or both. There is a predefined enumeration you can use: 

MRAA_GPIO_EDGE_NONE = 0,  

MRAA_GPIO_EDGE_BOTH = 1,  



MRAA_GPIO_EDGE_RISING = 2,  

MRAA_GPIO_EDGE_FALLING = 3 

To set an interrupt handler you use the function:  

mraa_gpio_isr (pin,edge,pointerToFunction,pointerToArgs) 

The first parameter determines the pin and the second determines what causes the interrupt. The final parameters 

determine the function called when the interrupt happened and a parameter to pass to the function. 

You can also use 

mraa_gpio_isr_exit (pin)  

to remove the interrupt handler associated with a pin.   

  

The simplest example of interrupt input is: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

 

void switchChange();  

 

int main(){  

 mraa_init();  

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_IN);  

 mraa_gpio_isr(pin31, MRAA_GPIO_EDGE_FALLING, 

                          &switchChange,NULL); 

 for (;;) {}; 

 return MRAA_SUCCESS; 

}  

 

void switchChange(){  

 printf("switch \n"); 

} 

  

You can see that the main program doesn't actually do anything once it has setup the input pin and interrupts - it 

just loops forever. After initializing pin 31 and setting it to input, an interrupt triggered on the falling edge of the 

input is set. Notice that the final parameters, args, isn't used in this example for simplicity - it is set to a NULL 

pointer. 

The interrupt handler just prints the fact that the switch has been pressed, i.e. a falling edge. If you run this 

program you should see "switch" printed in the Eclipse Console each time the switch is pressed.  

When the switch is released it generates a rising edge and you can generate an interrupt on both edges using  
MRAA_GPIO_EDGE_BOTH. 

We can use the arg parameter to pass in the details of the pin that caused the interrupt and allow the interrupt 

handler to read the state of the pin.  

#include "mraa.h"  

#include <stdio.h> 

#include <unistd.h> 



 

void switchChange(void* pin); 

int main(){ 

 mraa_init(); 

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_IN);  

 mraa_gpio_isr(pin31, MRAA_GPIO_EDGE_BOTH,  

                   &switchChange,pin31); 

 for (;;) {}; 

 return MRAA_SUCCESS; 

}  

 

void switchChange(void* pin){ 

    int s=mraa_gpio_read((mraa_gpio_context) pin); 

    printf("switch %d \n",s); 

} 

  

Notice that way that arg parameter is passed as a pointer to void - a C idiom for passing a pointer to any data type. 

Also notice that we don't have to dereference pin because mraa_gpio_context is already a pointer to struct and the 

dereference is automatic.  

If you find pointers confusing check out Are pointers and arrays equivalent in C?  and The Fundamentals of 

Pointers. 

When you run this program you will see the switch state printed each time it changes, i.e. when the switch is 

pressed and released. 

In general it is preferable to use an interrupt to service changes in input state unless you have a very specific reason 

not to - and the most common reason is that you need to work with very fast changes in the input. 

The Truth About Intel Edison Interrupts 

If you know something about interrupts in other systems you will probably be very pleased that the Edison 

provides a per pin interrupt system. However things are not quite what they seem. The pin interrupts are not true 

interrupts but software simulated interrupts.  

What happens when you set an interrupt on a pin in that mraa creates a new thread and starts makes a blocking call 

to the Linux system call poll. This only returns when there is an event in the SYSFS file system for the file 

corresponding to the pin you have attached the interrupt handler to.  

There are a number of consequences of this implementation. 

The first is that the response time isn't a fast as you might expect a hardware based interrupt to be. The polling 

loop is run on new thread and this is scheduled by Linux in the usual way meaning that it could take milliseconds 

in the worst case to respond to a change.  

The second is that if the event occurs during the call to poll your interrupt handler is called on the thread and this 

naturally stops any additional interrupts occurring. That is you cannot have the same interrupt during the execution 

of an interrupt handler - the interrupt is automatically disabled.   

The third is that because mraa will only spin up a single thread for each pin and because SYSFS doesn't tell mraa 

what edge transition occurred you can only associate one interrupt handler per pin.  

http://www.i-programmer.info/programming/cc/2384-are-pointers-and-arrays-equivalent-in-c.html
http://www.i-programmer.info/babbages-bag/558-pointers.html
http://www.i-programmer.info/babbages-bag/558-pointers.html


Also when the interrupt handler is called it is running on a different thread to the main program. This means you 

cannot use mraa_gpio_isr_exit (pin) to remove an interrupt handler from within the interrupt handler - notice that 

this would be possible with a real interrupt. The reason is simply that the isr_exit function stops the thread that is 

running the interrupt and must be run on the main function's thread. The inability to change interrupt handler after 

an interrupt means you cannot set up a chain of handlers that deal with a rising edge, then a falling edge.  

It also means that the parameter you pass to the interrupt handler has to be accessible from another thread and any 

variable created in the interrupt handler belong to the interrupt thread.   

Pulse Width Measurement 

Let's finish with an example of measuring a pulse width as this is a common task. In this case the pulse will be 

generated by a switch as in the last example, but in general the pulse could come from almost anything.  

Assume that a falling edge triggers the start of the measurement and a rising edge ends the interval. If we were 

working with physical interrupts we could try something clever like setting one interrupt handler for the rising 

edge and another for the falling edge. As only one interrupt handler can be set per pin this isn't possible. Equally 

we can't set a falling edge interrupt which, when it is called sets a rising edge interrupt handler, because you can't 

change an interrupt handler from within an interrupt handler.  

The only way to make this work is to set up a single interrupt handler that is to set up an interrupt handler for both 

edge transitions and read the pin to find out which one is occurring. On the falling edge you read the system clock 

and store the value. On the rising edge you read the system clock again and work out the difference between the 

two values. 

This is quite simple. In the main program we have: 

mraa_init(); 

mraa_gpio_context pin31 = mraa_gpio_init(31); 

mraa_gpio_dir(pin31, MRAA_GPIO_IN); 

mraa_gpio_isr(pin31, MRAA_GPIO_EDGE_BOTH,  

 &switchPressed, pin31); 

for (;;) {}; 

  

The interrupt handler is a little more complicated. First we get the time that the interrupt handler was entered: 

void switchPressed(void* pin) { 

 struct timespec ttime; 

 clock_gettime(CLOCK_REALTIME, &ttime); 

  

Next we read the pin to discover what transition has occurred and either save the start time or compute the 

interval:  

  

int s = mraa_gpio_read((mraa_gpio_context) pin); 

if (s == 0) { 

 btime=ttime;  

}  

else  

{   

 double nseconds = (double)((ttime.tv_sec-btime.tv_sec) 

  *BILLION)+(double)(ttime.tv_nsec-btime.tv_nsec ); 



  printf("time = %f (s)  \n ", nseconds/BILLION);} 

} 

  

Notice that while clock_gettime returns a structure with second and nanoseconds the time isn't accurate to the 

nearest nanosecond.   

If you run this program you will discover that it sort of works. Occasionally it will get a negative time because an 

rising edge occurs before a falling edge. 

If you are using a mechanical switch to generate the pulses you will also discover that you get multiple pulses for 

each press of the switch. The reason for this is switch bounce. When you press a switch it doesn't make contact 

cleanly - the voltage goes up and down until it settles at the low. And when you release the switch the bounce 

generates multiple rising edges. The slowness of the interrupt means that you are unlikely to see many pulses due 

to switch bounce but in the real work you will have to debounce the switch either physically or in the software. 

To physically debounce a switch you add a capacitor, but software debounce is very easy - simply add a delay 

before reading the pin's state to give it time to settle. The only problem is how long to wait? For the switch used 

here, and for most switches, a usleep(500), i.e. half a millisecond wait, should be enough. Note that in practice the 

wait is likely to be longer than 500 microseconds because of Linux task scheduling.  

The complete program, including debounce, is:  

#include "mraa.h"  

#include <stdio.h> 

#include <unistd.h>  

#include <time.h>  

 

#define BILLION 1000000000L  

struct timespec btime, etime;__time_t i; 

 

void switchPressed(void* pin);  

 

int main()  

{  

 mraa_init(); 

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_IN); 

 mraa_gpio_isr(pin31, MRAA_GPIO_EDGE_BOTH,  

                       &switchPressed, pin31); 

 for (;;) {};  

 return MRAA_SUCCESS;  

} 

 

void switchPressed(void* pin) { 

 struct timespec ttime; 

 clock_gettime(CLOCK_REALTIME, &ttime); 

 usleep(500); 

 int s = mraa_gpio_read((mraa_gpio_context) pin); 

 if (s == 0)  

 { 

   btime=ttime;  

 } 

 else  

 { 

   double nseconds = (double)( 

    (ttime.tv_sec-btime.tv_sec)*BILLION)+ 

    (double)(ttime.tv_nsec-btime.tv_nsec ) ; 

   printf("time = %f (s)  \n ", nseconds/BILLION); 

 } 

} 



Summary 

1. Intel Edison pin numberings can be confusing. You can mostly ignore Arduino pin numbering when 

working with the mini-breakout board - use either mraa pin numbers or SYSFS GPIO numbers. 

  

2. To initialize a pin use either: 
mraa_gpio_init (mraa_pin) 

mraa_gpio_init_raw (SYSFS_gpiopin) 

3. Set the direction of the pin with: 

mraa_gpio_dir (pin,dir) 

4. Set the mode if you need to: 

mraa_gpio_mode (pin, mode)  

but this only works with the Arduino board. The default for the mini board is pullup with a 50K resistor. 

This cannot be changed using mraa. 

5. For output write a 0 or a 1 using: 

mraa_gpio_write (pin, value) 

6. Mraa uses SYSFS to control the state of a GPIO line. This, and the fact that Linux can suspend the 

operation of your program at any time, means that you cannot rely on how fast you can change an I/O line. 

In particular, if you set multiple lines don't expect the change to happen at the same time.  

7. For input use: 

mraa_gpio_read (pin) 

8. You can either read the state of a GPIO line using a polling loop or you can use an interrupt.  

9. To associate a function with an interrupt use: 

mraa_gpio_isr (pin,edge, 

      pointerToFunction,pointerToArgs) 

10. It is important to know that Edison interrupts are not hardware interrupts but software simulated interrupts. 

What happens is that when you associate an interrupt function with a pin event a new thread is created 

which polls the pin until the event occurs when it then calls your function. The interrupt system makes use 

of SYSFS for all pin interactions.  

11. Software simulated interrupts have a number of drawbacks. You can only have a single interrupt handler 

per pin. You cannot change or remove and interrupt handler within an interrupt handler. Most importantly, 

the interrupt handler thread is scheduled by Linux in the usual way and as such you cannot rely on a speedy 

or timely response.  

12. If you need the fastest response time then use a polling loop and some or all of the techniques discussed in 

the next chapter.  

   

Where Next? 

Now you know how to perform basic I/O operations using mraa and this is all you need to know if speed isn't an 

issue. You can write programs that read data from human interface devices such as switches and you can send data 

to display devices such as LEDs. 



The problems start when you need Edison to change a line's state very quickly or respond to an input change 

quickly. In this context "quickly" means less than a millisecond and there are lots of tasks that require timings at 

the microsecond level.  

It is usually said that as the Intel Edison's main Atom CPU is running Linux it isn't capable of such realtime 

operations. This is not the case. With only a little effort you can improve the speed to the point where you can 

consider the system to be nearly realtime. This is the topic of the next chapter.  

Exploring Edison - Fast Memory Mapped I/O 

Fast memory mapped mode allows the Edison to generate pulses as short as 0.25 microseconds wide and to work with 
input pulses in the 10-microsecond region. In this chapter we discuss the best way of making use of the fast Atom CPU to 
work with the GPIO. 

In the previous chapter we learned how to make use of the GPIO as simple input and output. The biggest problem 

we encountered was that everything was on the slow side. 

There are many applications where this simply doesn't matter because slow in this case means around 100 

microseconds to 1 millisecond. Many applications work in near human time and the Edison is plenty fast enough.  

However there are applications were response times in the microsecond range are essential. For example the well 

know art of "big-banging" where you write a program to use the I/O lines to implement some communications 

protocol. 

While the Edison has support for I2C for example it lacks native support for alternatives such as the 1-wire bus 

and custom protocols such as that use with the very useful and popular DHT11 and DHT22 temperature and 

humidity sensors. In such cases speed is essential if it is going to be possible to write a bit-banging interface.  

There is also a second issue involved in using the Edison for time critical operations. The fastest pulse you can 

produce or read depends on the speed of the processor and, as we will see, the Edison's Atom processor is fast 

enough to generate pulses at the 1 microsecond level. (At the time of writing this seems to be faster than the MCU 

can work although this might improve with new releases of the SDK.) 

Another problem is caused by the fact that Linux is not a real time operating system. Linux runs many processes 

and threads at the same time by allocating each one a small time slice in turn. That is all of the processes that you 

can see in the process queue (use the ps, command to see a list) each get their turn to run. 

What this means is that your program could be suspended at any time and it could be suspended for milliseconds. 

What this means is that if your program is performing a big-banging operation the entire exchange could be 

brought to a halt by another process that is given the CPU for its time slice. This would cause the protocol to be 

broken and the only option would be to start over and hope that the transaction could be complete.  

It is generally stated, often with absolute certainty that you cannot do real time, and big banging in particular under 

a standard Linux OS, which is what Yocto Linux is. 

This is true but you can do near real time on any Linux distribution based on the 2.6 kernel or later - i.e. most 

including the current Yocto. This is easier than you might imagine but there are some subtle problems that you 

need to know about.  

In this chapter we tackle the problem of speed both output and input. In the next chapter we tackle smoothing out 

the glitches by using the Linux scheduler.   

The mraa Memory Mapped Driver 



Before looking at speeding things up let's have a look at how good the current mraa read/write routines are.  

First we need to know how fast can you toggle the I/O lines? 

If you write a loop which does nothing but change the line 

for (;;) { 

 mraa_gpio_write(pin, 0); 

 mraa_gpio_write(pin, 1); 

} 

the line is switched as fast as the software can manage it. 

In this case the pulse width is about 15 microseconds. 

  

 

  

This is reasonable, but notice that this is running under a general purpose Linux and every now and again the 

program will be suspended while the operating system does something else. In other words, you can generate a 

15 microsecond pulse but you can't promise exactly when this will occur.  

Using a different scale on the logic analyzer, it is fairly easy to find one or more irregularities; 

  

 

  

So on this occasion the generated pulse was roughly four times the length of the usual pulse - this is typical for a 

lightly loaded system, but at can be much worse.  

Now how do we go about creating a pulse of a given length? 

There are two general methods. You can use a function that sleeps the thread for a specified time, or you can use a 

busy wait, i.e. a loop that keeps the thread and just wastes some time looping.  

usleep 

The simplest way of sleeping a thread for a number of microseconds is to use usleep - even if it is deprecated in 

Posix.  

To try this, include a call to usleep(10) to delay the pulse: 

for (;;) { 

  mraa_gpio_write(pin, 0); 

  usleep(10); 

  mraa_gpio_write(pin, 1); 



  usleep(10); 

} 

You will discover that adding usleep(10) doesn't increase the pulse length by 10 microseconds but by just over 

100 microseconds. You will also discover that the glitches have gone and most of the pulses are about 

130 microseconds long.  

What seems to be happening is that calling usleep yields the thread to the operating system and this incurs an 

additional 50 microsecond penalty due to calling the scheduler. There are also losses that are dependent on the 

time you set to wait - usleep only promises that your thread will not restart for at least the specified time.  

If you look at how the delay time relates to the average pulse length things seem complicated:

 

  

You can see that there is a about a 78 microsecond fixed overhead but you also get a delay of roughly 1.34 

microseconds for each microsecond you specify.  

If you want a pulse of length t microseconds then use a delay given by: 

 t'= t * 0.74 - 57 

Notice that this only accurate to tens of microseconds over the range 100 to 1000 microseconds.   

Busy wait 

The problem with usleep is that it hands the thread over to the operating system which then runs another thread 

and returns control to your thread only when it is ready to. This works and it smooths out the glitches we saw in 

the loop without usleep - because usleep yields to the operating system there is no need for it to preempt your 

thread at other times.  

An alternative to usleep or any function that yields control to the operating system is to busy wait. In this case your 

thread stays running on the CPU but the operating system will preempt it and run some other thread. 

Surprisingly a simple null for loop works very well as a busy wait; 

int i; 

for (;;) { 

 mraa_gpio_write(pin31, 0); 

 for(i=0;i<100;i++){}; 

 mraa_gpio_write(pin31, 1); 



 for(i=0;i<100;i++){}; 

} 

If you try this out you will discover that you can calibrate the number of loops per microsecond delay produced.   

 

  

If you want to produce a pulse of duration t microseconds then use  

n = 62.113 * t - 912.45  

loops.  

For example to create a 100 microsecond pulse you need  

62.113*100-912.45 =5299 loops. 

  

int i; 

for (;;) { 

 mraa_gpio_write(pin31, 0); 

 for(i=0;i<5299;i++){}; 

 mraa_gpio_write(pin31, 1); 

 for(i=0;i<5299;i++){}; 

} 

  

This produces pulses that are close to 100 microseconds, roughly in the range 89  to 108 microseconds - but the 

glitches are back: 

  

 

  



We now have pauses in the pulse train that are often 1100 microseconds and very occasionally more. This should 

not be surprising. We are now keeping the thread for the full amount of time the operating system allows until it 

preempts our program and runs or contemplates running another thread. 

At the moment it looks like busy waiting is a good plan but it has problems. The most obvious is that you have to 

rely on the time to perform one loop not changing. This is something that worries most programmers but if you are 

targeting a particular cpu there isn't much that happens to change the speed of a for loop. 

If you are worried about what happens if the Edison is upgraded to a faster clock then you could put a calibration 

stage in at the start of your program and time how long 5000 loops take and then compute the necessary busy wait 

parameters for the time periods your program uses.  

The idea of calibration seems like a good one but it isn't going to be foolproof unless we can find a way to stop the 

glitches caused by the operating system's scheduler putting arbitrary delays into our program anytime it needs to 

run another thread - more on this in the next chapter.  

Fast Mapped I/O 

The most recent versions of mraa support another way to access the GPIO and it is much faster.  

Most of the delay in setting the GPIO line is due to mraa using the Linux SYSFS subsystem. SYSFS is a file 

system that can be used for all sorts of interfacing tasks. In this case SYSFS is being used to map the GPIO pins as 

if they were files in a file system. This has the advantage of making the GPIO available to almost anything that 

runs under Linux, but has the disadvantage of a high overhead.  

A faster way to work with the GPIO lines is to allow the software to write directly to the memory locations where 

the GPIO port registers live. This is a standard part of the SYSFS facility and there is a special file that memory 

maps the driver so writing to a particular address sets a given line high and to another address sets it low.  

Notice that using memory mapped I/O only changes the way the line is read or written. For all other operations 

such as setting the line's direction a SYSFS call is used.  

The installation of the memory map is something mraa can do and it will substitute memory mapped read and 

write function for any given pin. 

The addresses and data masks are computed from scratch each time and there is a slight speed up to be gained by 

precomputing them and providing your own read/write functions for each pin. However the gains are hardly worth 

it - see later.  

You can set how any pin is accessed using the function: 

mraa_gpio_use_mmaped(pin,1/0). 

If the second parameter is 1 then the pin is accessed directly i.e. a fast memory mapped access. If the parameter is 

0 the slower SYSFS interface is used. 

Changing the program to use fast I/O on pin 31: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

 

int main() 

{ 

 mraa_gpio_context pin31=mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_OUT); 



 mraa_gpio_use_mmaped(pin31,1); 

 for (;;) { 

  mraa_gpio_write(pin31, 0); 

  mraa_gpio_write(pin31, 1); 

 } 

 return MRAA_SUCCESS; 

} 

 

With this change the line is toggled for approximately 0.25 microsecond high and 0.3 microseconds low which is 

around 60 times faster. The reason for the difference in the high and low times is that at this frequency capacitive 

effects become important and the wave form isn't a perfect square wave. The exact timing figures you get will 

depend on the logic thresholds used by the measuring device.  

Putting this another way the SYSFS approach can produce a 0.03 Mhz pulse train but memory mapping can 

produce a (close to) 2Mhz pulse train. 

Of course we still have the problem that the program is running under a non- realtime operating system and 

therefore it will be interrupted and there will be jitter in the faster pulse train as well.  

The next step is to create pulses longer than 0.25 microseconds.  

There isn't much point in trying to use usleep because the overhead in yielding to the operating system is such that 

usleep(1) produces 98 microsecond pulse. In other words using usleep with fast memory map access produces 

pulses in the same sort of region as you can create using slow SYSFS. 

If you want to use usleep with fast memory mapped mraa you can use the following formula to work the delay. If 

you want a pulse of width t microseconds delay for : 

t' = 0.999*t - 92.5 

microseconds in usleep. This is accurate from 100  to  800 microseconds. 

If you want to generate pulses in the range 0.25 to 100 microsecond range then you have little option but to busy 

wait.   

 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

 

int main() 

{ 

 mraa_gpio_context pin31=mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_OUT); 

 mraa_gpio_use_mmaped(pin31,1); 

 int i; 

 for (;;) { 

  mraa_gpio_write(pin31, 0); 

  for(i=1;i<7500;i++){}; 

  mraa_gpio_write(pin31, 1); 

  for(i=1;i<7500;i++){}; 

 } 

 return MRAA_SUCCESS; 

} 

  

The relationship between loop counter and pulse length is linear up to at least 100 microseconds.  



 

  

The formula for the number of loops needed to create a pulse of length t is: 

n = 71.36*t - 21.276 

So for a 10 microsecond pulse you need 692 loops. Not perfect, but a good start for manual trimming. 

In short using fast memory mapped output and busy wait you can generate reasonably accurate 1 to 10 

microsecond pulses.  

Notice that this doesn't mean we are home and dry when it comes to fast output. If you try to change multiple lines 

within a loop then the time for each loop increases and there will be phase shifts between the pulses generated. For 

example if you try: 

#include <stdio.h> 

#include <unistd.h> 

int main(){  

 mraa_init();  

 mraa_gpio_context pin15 = mraa_gpio_init(15); 

 mraa_gpio_dir(pin15, MRAA_GPIO_OUT_HIGH); 

 mraa_gpio_use_mmaped(pin15,1); 

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_OUT_LOW); 

 mraa_gpio_use_mmaped(pin31,1); 

 for (;;) { 

  mraa_gpio_write(pin15, 0); 

  mraa_gpio_write(pin31, 1); 

  mraa_gpio_write(pin15, 1); 

  mraa_gpio_write(pin31, 0); 

 } 

 return MRAA_SUCCESS; 

} 

 

Which is just the two pulse train generator given in the previous chapter but speeded up using memory mapped 

output you will discover that the pulse length increases to 0.5 microseconds i.e. double and you still have the same 

order or phase shift between the two pulse trains: 

  



 

  

Notice however that each pulse is 0.5 microseconds and the overlap is for a much shorter time - approximately 

0.25 microsecond.  

However the comparison isn't completely fair. If you generate memory mapped pulses of the same sort of length as 

the SYSFS approach works with then things look a lot better: 

  

 

Now it does look as if the pulse trains are out of phase and the overlap is smaller. The point is that memory 

mapping is not just for short pulse durations but for more accurate pulse generation.  

Without a register based access to the GPIO which would allow you to set multiple pin outs in one operation this is 

about as good as it gets.  

Fast Input 

Now we have to try to answer the question of how fast a pulse Edison can measure on input.  

Input is more difficult to quantify because you have to take potentially many measurements to track an input 

pulse.  

There is no point in trying to use an interrupt approach because interrupts always make use of SYSFS and this is 

slow. If you want the advantages of memory mapped I/O you have to use a polling loop.  

A simple measurement of how long it takes to perform multiple reads from a single input line gives a reasonable 

estimate of how fast input can be.  

Using SYSFS you can read the line 100 times in about 1300 microseconds which is made up of about a 250 

microsecond overhead and 10 microseconds per sample,  

Using memory mapped input you can read 100 times in about 70 microseconds which is made up of about 11 

microseconds overhead and 0.68 microseconds per sample.  

With these estimates it should be possible to read in pulse trains consisting of 10 microsecond pulses using 

memory mapped input and 100 microsecond pulses using SYSFS.  

Putting this another way for a 10 microsecond pulse memory mapped input should allow you to get 15 samples per 

pulse allowing you to time it with an accuracy of about 0.5 microseconds. 



There are two ways of reading data even using a polling loop. 

You can opt to use the system to time how long an input hasn't changed with something like: 

clock_gettime(CLOCK_REALTIME, &btime); 

for(;;){ 

 if(mraa_gpio_read(pin31)==0)break; 

} 

clock_gettime(CLOCK_REALTIME, &ttime); 

The problem with this approach is that the realtime clock might claim to be accurate to nanosecond but it isn't. In 

fact on the Edison it is too coarse to be used to measure the smallest pulses that the Edison is capable of. There is 

also the fact that the call to clock_gettime takes around 4 microseconds per call and this is a lot to spend when you 

are working at the 10 microsecond region.  

A much better idea is to simply use a busy wait implemented as a for loop and use the value of the index when the 

loop is exited as a measure of time. 

Use something like: 

for(i=0;i<10000;i++){ 

 if(mraa_gpio_read(pin31)==0)break; 

} 

  

This also has the advantage that the value that you set for the maximum number of loops i.e. 10,000 in this 

example acts as a timeout. The value of i when the loop exits gives you a measure of how long the line was low 

for.  

Using this simple construction we can easily write a program that measures the length of a high pulse. This is a 

tiny bit more complicated than you might expect because we only want to measure a single pulse in a uniform 

pulse train. 

The algorithm is to first wait for the line to go low. Then wait for it to go high and then wait for it to go low 

keeping the count of the number of times the loop iterated.  

That is - wait for the line to go low: 

for(;;){ 

 if(mraa_gpio_read(pin31)==0)break; 

} 

Next wait for the line to go high: 

for(i=0;i<10000;i++){ 

  if(mraa_gpio_read(pin31)==1)break;  

} 

Finally wait for the line to go low again: 

for(i=1;i<10000;i++){ 

 if(mraa_gpio_read(pin31)==0)break; 

} 

  



The width of the pulse is given by the value of i when the final loop exits. Notice that the count in the final loop 

starts from 1 because we can count the single high sample that ended the second loop as the first high 

measurement.  

The complete program to measure a single pulse and display the "time" in the Eclipse console is:  

#include <stdio.h> 

#include <unistd.h>  

 

int main() { 

 mraa_init(); 

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_IN); 

 mraa_gpio_use_mmaped(pin31,1); 

 int i; 

 for(;;){ 

  if(mraa_gpio_read(pin31)==0)break; 

 } 

 for(i=0;i<10000;i++){ 

  if(mraa_gpio_read(pin31)==1)break; 

 } 

 for(i=1;i<10000;i++){ 

  if(mraa_gpio_read(pin31)==0)break; 

 } 

 printf("%d \n",i); 

 return MRAA_SUCCESS; 

} 

If you feed a range of pulse widths into the input line you can obtain a calibration 

chart:  

  

 You can use the approximate formula: 

 t = 0.66 * i + 0.548 microseconds 

to convert from final loop count to time in microsecond.  

This means that if you are trying to measure a 5 microsecond pulse you can expect to get six samples while it is 

high giving an accuracy of something like 1 microsecond. The number of samples for various sizes of pulse are: 

Pulse uS Samples 

5 6 



10 14 

20 30 

40 60 

80 121 

160 241 

  

Getting 6 samples per pulse isn't great but it is enough to tell the difference between a 5 and 10 microsecond 

pulse.  

Notice also that you can't afford to do any computation in the measuring loop othewise you will reduce the 

sampling rate. 

If you are measuring the time the pulse is high there is usually more time to do things in the low part of the pulse 

because you don't care as much exactly when you start the polling loop - as long as it is before the pulse goes high 

again.  

Direct Memory Mapping 

It was mentioned earlier that it was possible to by-pass mraa and write to the GPIO directly - surely this must be 

faster?  

Mostly to avoid you wasting time here is a program that works directly with the in memory driver - and it is no 

faster than going via mraa. This is a puzzle.  

Rather than modifying mraa to get the information we need to locate the memory mapped driver it is easier to 

create a function that loads the driver: 

uint8_t* load_memmap(){ 

 

 int mmap_fd; 

 struct stat fd_stat; 

 uint8_t* mmap_reg; 

 mmap_fd = open( 

  "/sys/devices/pci0000:00/0000:00:0c.0/resource0",  

     O_RDWR); 

 fstat(mmap_fd, &fd_stat); 

 mmap_reg =(uint8_t*) mmap(NULL, fd_stat.st_size, 

    PROT_READ | PROT_WRITE, MAP_FILE | MAP_SHARED,  

    mmap_fd, 0); 

 return mmap_reg; 

} 

  

This function is essentially a modified version of how mraa loads the driver. The driver is a file in /sys/devices 

which is opened and then loaded using the mmap function. The function returns mmap_reg which gives the 

location of the driver in memory. This is essentially what a call to mraa_gpio_use_mmaped does the first time you 

call it. 

As always to make the logic clear no error detection code has been included. The most likely error is that the file is 

missing or has changed its name due to an update.  



Now we have the driver loaded into memory we have to work out various addresses and two masks. 

The address we need depends on the pin number: 

uint8_t*  loc=(pin / 32) * sizeof(uint32_t)+ mmap_reg; 

This gives the start address of the area that controls the pin - note that the pin number is the SYSFS pin number not 

the mraa number. 

We also need two offsets from the start of the area - one for pin on and one for pin off: 

uint8_t valoffsetOn = 0x34; 

uint8_t valoffsetOff = 0x4c; 

Finally we need a mask that is written to the location to change the state of the pin - this also depends on the pin 

number: 

uint32_t mask=(uint32_t)(1 << (pin % 32)); 

Finally we can actually write to the pin: 

*(volatile uint32_t*) (loc + valoffsetOn) = mask; 

to set it high and 

*(volatile uint32_t*) (loc + valoffsetOff) = mask; 

to set it low.  

The complete program with the necessary includes and initialization is: 

#include <stdio.h> 

#include <unistd.h> 

 

#include <sys/mman.h> 

#include <sys/stat.h> 

 

uint8_t* load_memmap(); 

 

int main() 

{ 

 mraa_init(); 

 mraa_gpio_context pin31 = mraa_gpio_init(31); 

 mraa_gpio_dir(pin31, MRAA_GPIO_OUT); 

  

 load_memmap(); 

 int pin= 44; 

 

 uint32_t mask=(uint32_t)(1 << (pin % 32)); 

 uint8_t valoffsetOn = 0x34; 

 uint8_t valoffsetOff = 0x4c; 

  

 uint8_t* loc=(pin / 32) * sizeof(uint32_t)+ mmap_reg; 

 

 for (;;) { 

  *(volatile uint32_t*) (loc + valoffsetOn) = mask; 

  *(volatile uint32_t*) (loc + valoffsetOff) = mask; 

 } 



 return MRAA_SUCCESS; 

} 

 

uint8_t* load_memmap(){ 

 int mmap_fd; 

 struct stat fd_stat; 

 uint8_t* mmap_reg; 

 mmap_fd = open( 

  "/sys/devices/pci0000:00/0000:00:0c.0/resource0", 

  O_RDWR); 

 fstat(mmap_fd, &fd_stat); 

 mmap_reg =(uint8_t*) mmap(NULL, fd_stat.st_size, 

   PROT_READ | PROT_WRITE, MAP_FILE | MAP_SHARED, 

   mmap_fd, 0); 

 return mmap_reg; 

} 

  

Notice that pin mraa pin 31 is SYSFS pin 44. 

All of this isn't very difficult but it is fairly pointless. Most of the pulses produced are about 0.2 microseconds with 

the occasional pulse around 0.25 microseconds. However at this speed the pulse shape is poor and capacitive 

effects start to make a difference to the high and low times. If you are using a logic analyzer then the pulse width 

you measure depends on the  thresholds it uses. 

There seems to be only a small overhead in using the mraa read/write functions.  

Notice also that as the memory mapping isn't organized into registers you can't make use of it to set or unset 

multiple pins at a time.  

Summary 

1. Using standard SYSFS I/O the Edison works with signals in the 20 to 50 microsecond region. 

2. Using fast memory mapped I/O you can work with signals in from 0.25 microsecond output with around 5 

microsecond inputs. 

  

3. For fast I/O busy wait is the only way to achieve these higher speeds. 

  

4. Fast I/O not only allows you to work with faster pulses it also permits better synchronization between 

switching multiple I/O lines.  

5. You can make use of direct read/writes to the memory mapped drivers and by pass mraa but the gains are 

small.   

Where Next 

Now we can work with much faster signals it is time to tackle those troublesome glitches. We need to find out how 

to use Linux in a  near real time mode - see the next chapter. 

 

Exploring Edison - Almost Real Time Linux 



You can write real time programs using standard Linux as long as you know how to control scheduling. In fact it 

turns out to be relatively easy and it enables the Edison to do things you might not think it capable of.  

 You can write real time programs using standard Linux as long as you know how to control scheduling. In fact it 

turns out to be relatively easy and it enables the Edison to do things you might not think it capable of.  
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Setting Scheduling Priority 

This sounds like chaos but if you think about it for a moment and start simply you will see that it provides most of 

what you are looking for. You are in full control of the Edison and so you can determine exactly how many non-

zero priority threads there are. By default all of the standard threads are priority zero and scheduled by the normal 

scheduler. 

Now consider what happens if you start a FIFO scheduled thread with priority 1. 

It starts and is added to the end of the priority 1 queue. Of course it is the only priority 1 process and so it starts 

immediately on one of the two cores available. If the process never makes a call that causes it to wait for I/O say or 

become blocked in some other way then it will execute without being interrupted by any other process.  

In principle this should ensure that your process never delivers anything but its fastest response time.  

This is almost but not quite true.  

There are more complex situations you can invent with threads at different priorities according to how important 

they are but this gets complicated very quickly. 

A modification to the SCHED_FIFO scheduler is SCHED_RR - for Round Robin. In this case everything works as 

for SCHED_FIFO except that each running process is only allowed to run for a single time slice. When the time 

slice is up the thread at the head of  the priority queue is started and the current thread is added to the end of the 

queue. You can see that this allows each thread to run for around one time slice in turn - which is a round robin 

scheduler.  

In most cases for real time programming with the Edison the SCHED_FIFO scheduler is what you need and in its 

simplest form. 

The complete set of scheduling commands are:  

 sched_setscheduler Set the scheduling policy and parameters of a specified thread 

 sched_getscheduler Return the scheduling policy of a specified thread 

 sched_setparam Set the scheduling parameters of a specified thread 

 sched_getparam  Fetch the scheduling parameters of a specified thread 
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 sched_get_priority_max Return the maximum priority available in a specified scheduling policy 

 sched_get_priority_min Return the minimum priority available in a specified scheduling policy 

 sched_rr_get_interval Fetch the quantum used for threads that are scheduled under the "round-robin" 

scheduling policy 

 sched_yield Cause the caller to relinquish the CPU, so that some other thread be executed 

 sched_setaffinity  Set the CPU affinity of a specified thread 

 sched_getaffinity  Get the CPU affinity of a specified thread 

 sched_setattr Set the scheduling policy and parameters of a specified thread; this Linux-specific system call 

provides a superset of the functionality of sched_setscheduler and sched_setparam 

 sched_getattr Fetch the scheduling policy and parameters of a specified thread; this Linux-specific system 

call provides a superset of the functionality of sched_getscheduler and sched_getparam. 

The scheduling types supported are: 

SCHED_OTHER the standard round-robin time-sharing policy 

SCHED_BATCH for "batch" style execution of processes 

SCHED_IDLE for running very low priority background jobs 

SCHED_FIFO a first-in, first-out policy 

SCHED_RR a round-robin policy 

where only the final two are real time schedulers.  

Also notice that all of the scheduling function return an error code which you should check to make sure thing 

have worked. For simplicity the examples that follow ignore this advice.  

How Bad Is The Problem? 

The first question we need to answer is how bad the situation is without real time scheduling. 

This is not an easy question to answer because it depends on so many factors. Take, for example, a very simple 

program which toggles a GPIO line as fast as it can using mraa:  

#include <stdio.h> 

#include <stdlib.h> 

#include "mraa.h" 

#include <sched.h> 

int main() { 

 mraa_gpio_context pin = mraa_gpio_init(13); 

 mraa_gpio_dir(pin, MRAA_GPIO_OUT); 

 for (;;) { 

  mraa_gpio_write(pin, 0); 

  mraa_gpio_write(pin, 1); 

 } 

 return MRAA_SUCCESS; 

} 



As we have already discovered we can generate pulses at around 15 microseconds wide using this method. 

The real question is how does the scheduler change this pulse length by interrupting your program? 

Inspecting about one second's worth of readings with a logic analyser reveals that the pulse length can be as large 

as 100 microseconds: 

  

Average 14.9 

Max 106.9 

Min 14.13 

  

A frequency count of pulse sizes is also interesting: 

micro seconds   no of pulses 

0 0 

10 0 

20 65700 

30 58 

40 0 

50 0 

60 84 

70 12 

80 0 

90 0 

100 0 

200 2 

10000 0 

  

You can see that there were nearly 100 pulses in the 60-70 microsecond range and just two in the 100-200 range.  

This might not seem too bad, but if the CPU is loaded just a little then things look much worse. 

Add eight CPU-hogging processes and the results are: 

Average  15.4863283326 

Max  10090.0625 

Min  14.1875 

  

The frequency table is also interesting: 

micro seconds no of pulses 

0 0 

10 0 

20 65701 



30 56 

40 2 

50 0 

60 35 

70 49 

80 10 

90 0 

100 0 

20000 4 

30000 0 

 
0 

  

Yes, with these conditions there were four instances of greater than 10 millisecond pulses. This means that the 

program was suspended for 40 milliseconds in a one second sample.  

If you try the same thing using fast mraa memory mapping you will find that you get few interruptions on a lightly 

loaded system as long as you don't make a system call like usleep. However, if the loading is increased the thread 

is suspended for increasingly large amounts of time.  

Real Time FIFO Scheduling 

Now we can try the same test but with FIFO real time scheduling selected. 

To do this we need to use the sched_setscheduler function: 

sched_setscheduler(pid,SCHED_FIFO,&priority); 

where pid is the thread id - if zero then the calling thread is used. 

The second parameter sets the type of scheduling used FIFO in this case and the final parameter is a pointer to a 

structure that specifies the priority. 

The modified program is:  

#include <stdio.h> 

#include <stdlib.h> 

#include "mraa.h" 

#include <sched.h> 

int main() { 

 const struct sched_param priority={1}; 

 sched_setscheduler(0,SCHED_FIFO,&priority); 

 mraa_gpio_context pin = mraa_gpio_init(13); 

 mraa_gpio_dir(pin, MRAA_GPIO_OUT); 

 mraa_gpio_use_mmaped(pin,1); 

 for (;;) { 

  mraa_gpio_write(pin, 0); 

  mraa_gpio_write(pin, 1); 

 } 

 return MRAA_SUCCESS; 

} 

  

If you run this program you will discover that the result are very different - no matter what the load on the CPU.  



Average 14.9 

Maximum 67.38 

Minimum 13.5625 

  

and the frequency table is: 

  

micro seconds  no of pulses 

0 0 

10 0 

20 65700 

30 57 

40 1 

50 49 

60 46 

70 3 

80 0 

90 0 

100 0 

1000 0 

20000 0 

  

You can see that now the only problem is that we have around 100 pulses around 50 microseconds. Looking at the 

logic analyser trace reveals that there is a 50 microsecond pulse about every 10 milliseconds.  

Notice that this result is independent of CPU loading, the data above is for a heavily loaded CPU. What happens is 

that the program is loaded into one of the cores and it stays there as there are no other priority one programs 

running. All of the priority zero programs are scheduled using the other core to run.  

You can also try locking the programs memory to stop the system from paging it if other applications need a lot of 

memory. In practice this isn't a common occurrence on a device like the Edison but if you do need to do it then all 

you need is a call to mlock in sys/mman.h and to unlock to unlock it. You can lock the current memory or future 

memory allocations. In most cases it is sufficient to lock current memory unless you are using dynamic memory 

allocation.  

mlockall(MCL_CURRENT); 

In the case of our test program locking memory make no difference as there is plenty of real memory to go 

around.  

Practical FIFO Scheduling 

Adding a simple statement makes your program hog one of the processor cores and removes the long interruptions 

that occur when other threads are scheduled to run.  



You might think at this point that the best thing to do is set a priority of 99 and use FIFO scheduling as soon as 

your program is loaded. However sharing a single core between all of the other processes on the Edison can have 

some undesirable effects.  

If you try this you will discover that ever so often - about every ten minutes - the WiFi link will fail. The reason is 

most likely that the WiFi thread doesn't get to run sufficiently often. There are likely to be other more subtle 

problems. 

To avoid these it is a good idea to only enable FIFO scheduling when it is absolutely needed or to use the yield 

command at regular intervals. 

For example if you are writing a program that has to decode an incoming pulse stream then FIFO scheduling it for 

the time it actually does the decoding is the best option. In this situation you would still have to cope with a 

possible 50 microsecond delay every 10 milliseconds.  

This raises the question of where the 50 microsecond delay originates? 

Without more information it is difficult to be sure, but the most likely suspect is a System Management 

Interrupt, SMI. This is used by all Intel ICH chip sets which includes the Atom. An SMI is something that happens 

outside of the operating system and it is often necessary for the correct operation of the hardware. The bottom line 

is that SMIs cannot easily be turned off and this problem that effects all operating systems, including real time 

operating systems.  

At this point things get complicated and you have to start worrying about power management issues, DMA and 

many other things that a complex CPU and operating system does behind the scenes.  

If you can't work within the FIFO restrictions then you are probably better off finding a completely different 

solution - use an mcu, perhaps even the mcu on the Edison chip, or use dedicated hardware that carries out the 

operation away from the software like the UART or the PWM GPIO lines. More about this approach in the next 

chapter.   

Exploring Edison - Pulse Width Modulation 

One way around the problem of getting a fast response from a microcontroller is to move the problem away from 

the processor. In the case of the Edison there are three facilities which can be used to generate signals or 

communicate with other devices without having to worry about how fast the processor can do the job. In this 

chapter we take a close look at pulse width modulation including, driving LEDs and servos 

The GPIO lines at their most basic output function can be set high or low by the processor. How fast they can be 

set high or low depends on the speed of the processor.  

As we discovered in Chapter 5, the Edison can generate pulses in the region of 0.25 microseconds with memory 

mapped I/O. This means you can generate a pulse train with a frequency of up to 2MHz.  

Using the GPIO line in its Pulse Width Modulation (PWM) mode you can generate pulse trains up to 9.6MHz, i.e. 

pulses as short as just a little more than 0.1 microseconds.  

The reason for the increase in speed is that the GPIO controls a pulse generator and once set to generate pulses of a 

specific type the pulse generator just gets on with it without needing any intervention from the GPIO line or the 

processor. In fact the pulse output can continue after your program has ended if you forget to reset it.  

Of course, even though the PWM line can generate pulses as short as 0.1 microseconds, it can only change the 

pulses it produces each time that processor can modify it. For example, you can't use PWM to produce a single 0.1 

microsecond pulse because you can't disable the PWM generator in just 0.1 microsecond.  
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Some Basic Edison PWM Facts 

There are some facts worth getting clear right from the start, although some of the meanings will only become 

clear as we progress. 

 It is worth saying - even though it should be fairly obvious - there are no PWM inputs, just 4 outputs. If for 

some reason you need to decode or respond to a PWM input then you need to program it using the GPIO 

input lines.  

 Unlike the Galileo, which was in many senses the forerunner of the Edison, each of the PWM lines can be 

set to any period and duty cycle you require - in the case of the Galileo they were all set to the same 

frequency. 

 Although the raw interface with the PWM lines works in nanoseconds, the smallest period you can set is 1 

microsecond - you can set a duty cycle smaller than 1 microsecond however. 

 There is no fast memory mapped I/O for the PWM lines as there is for the general GPIO lines. All use of 

the PWM lines goes through the SYSFS file system and hence is slow - about 10 microseconds for any 

operation. 

 The default period is 50 microseconds. So if you are trying for a  specific period but see a 50 microsecond 

repeat rate then your program is probably not setting the period. 

 The fastest pulse repetition rate is 1 microsecond and the slowest is 0.218453 seconds. That is you can't use 

a PWM line to flash an LED once every second.  

  

 The PWM lines are not automatically reset when you start a program and this can be a problem i.e. you 

inherit whatever the PWM lines were doing when your program starts, more of this later.  

 If your PWM using program seems not to work - reboot the Edison and try again before you assume there 

is something seriously wrong. 

 As for all of the GPIO lines on the mini breakout board the PWM lines work at 1.8V and you need some 

extra hardware to make them drive anything useful.  

 One the Arduino breakout board the PWM lines can be mapped to any of the standard Arduino PWM lines 

- this isn't necessary or possible on the mini-breakout board.  

  

Mraa PWM commands 

There are four PWM GPIO lines: 

MRAA Number Physical Pin 
Edison Pin 

(SYSFS) 
Pinmode0 Pinmode1 

0 J17-1 GP182 GPIO-182 PWM2 

14 J18-1 GP13 GPIO-13 PWM1 

20 J18-7 GP12 GPIO-12 PWM0 

21 J18-8 GP183 GPIO-183 PWM3 

You can either use these lines as standard GPIO lines or as PWM lines and you can switch between modes of 

operation as you please.  



To use one of these lines in PWM mode you have to initialize it using one of the init functions; 

mraa_pwm_init (int pin) 

 

mraa_pwm_init_raw (int chipid, int pin) 

As usual the first init function uses the mraa pin number and the second uses the GPIO number (SYSFS).  

So far so easy - but now the confusion starts.  

There are lots of ways of setting the output pulse characteristics of the pin. Some might say too many, but as you 

get used to them you will realize that each one has its particular advantage.  

There are two basic things to specify about the pulse train that is generated - its repetition rate and the width of 

each pulse.  

The basic way to specify the repetition rate is to use one of the period functions: 

mraa_pwm_period (mraa_pwm_context dev, float seconds) 

 

mraa_pwm_period_ms (mraa_pwm_context dev, int ms) 

 

mraa_pwm_period_us (mraa_pwm_context dev, int us) 

It is important to realise that you can't set any time you care to. On the current vesion of the Edison the PWM lines 

are constrained to 1 microsecond up to 218453 microseconds, i.e. 0.218453 seconds. If you set a time in any unit 

outside of this range then the PWM line is not updated. This can cause you to believe that your program has a bug 

and the PWM line is not responding.  

So for example  

mraa_pwm_period_us (pindev, 100); 

sets the period to 100 microseconds. That is a pulse will be generated every 100 microseconds, but how wide is the 

pulse? T 

This is set by one of the pulsewidth functions: 

mraa_pwm_pulsewidth (mraa_pwm_context dev, float seconds) 

 

mraa_pwm_pulsewidth_ms (mraa_pwm_context dev, int ms) 

 

mraa_pwm_pulsewidth_us (mraa_pwm_context dev, int us) 

So, for example, after the previous period function call: 

mraa_pwm_pulsewidth_us (pin, 10); 

sets the pulse width to 10 microseconds. The resulting pulse train can be seen on the logic analyser trace: 

 

  



As an alternative to setting the pulse width we can specify percentage of the period that the pulse is high. This is 

called the duty cycle. For example, a duty cycle of 50% means the pulse is high for half the period and we have a 

perfect square wave. A duty cycle of 0% is always low and 100% is always high.  

To set the duty cycle you can use: 

mraa_pwm_write (mraa_pwm_context dev, float percentage) 

where percentage is between 0 and 1 as a fractional percentage i.e. percent/100. 

You can also discover the current duty cycle using: 

mraa_pwm_read (mraa_pwm_context dev) 

Often you find that using PWM you set the period once and then modify the duty cycle repeatedly - hence the two 

sets of functions to set each value.  

There are times when setting both period and pulse width/duty cycle is useful and for this we have: 

mraa_pwm_config_ms (mraa_pwm_context dev, int period, float width) 

which sets the period in whole milliseconds and the pulse width in milliseconds and 

mraa_pwm_config_percent (mraa_pwm_context dev, int period, float duty) 

which sets the period in whole milliseconds and duty cycle as a fraction between 0 and 1.  

You need also need to know about: 

mraa_pwm_enable (mraa_pwm_context dev, int enable) 

which can be used  turn the pulse train on and off. If enable is greater than zero then the pin is driven otherwise it 

is disabled.  

If you have finished with the pin as a PWM output you can close it using: 

mraa_pwm_close (mraa_pwm_context dev) 

and then reuse it as a GPIO pin.  

You can also discover the max and min workable periods with: 

int mraa_pwm_get_max_period() 

int mraa_pwm_get_min_period() 

Using PWM 

So now you know how to make use of the PWM lines. All you have to do is initialize one of the four possible pins 

and set the period and pulse width/duty cycle - as soon as you enable the output the pulse train starts.  

The simplest PWM program you can write is: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

int main() 



{ 

 mraa_pwm_context pwm = mraa_pwm_init(14); 

 mraa_pwm_period_us(pwm, 10); 

 mraa_pwm_pulsewidth_us(pwm,1);  

 mraa_pwm_enable(pwm,1 ); 

  

 return MRAA_SUCCESS; 

} 

This produces a pulse train consisting of a microsecond wide pulse every then microseconds on mraa pin 14 which 

is J18-1 on the mini-breakout board.  

Notice that there is no need to put the program into an infinite loop. Once the PWM line has been set up and 

enables it just gets on with generating the pulse train no matter what the Edison does. In this case the pulse 

generation continues long after the program has ended. 

Just to demonstrate that all of the PWM lines can be used independently of one another here is a program that sets 

each one of the four to a different period and duty cycle: 

 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h>int main() 

{ 

 mraa_pwm_context pwm0 = mraa_pwm_init(20); 

 mraa_pwm_context pwm1 = mraa_pwm_init(14); 

 mraa_pwm_context pwm2 = mraa_pwm_init(0); 

 mraa_pwm_context pwm3 = mraa_pwm_init(21); 

  

 mraa_pwm_period_us(pwm0, 10); 

 mraa_pwm_period_us(pwm1, 20); 

 mraa_pwm_period_us(pwm2, 30); 

 mraa_pwm_period_us(pwm3, 40); 

 

 mraa_pwm_write(pwm0, 0.5f); 

 mraa_pwm_write(pwm1, 0.4f); 

 mraa_pwm_write(pwm2, 0.3f); 

 mraa_pwm_write(pwm3, 0.2f); 

 

 mraa_pwm_enable(pwm0,1 ); 

 mraa_pwm_enable(pwm1,1 ); 

 mraa_pwm_enable(pwm2,1 ); 

 mraa_pwm_enable(pwm3,1 ); 

 return MRAA_SUCCESS; 

} 

and you can see the result in the following logic analyser display: 



 

  

If you want to make sure that you don't inherit any settings from a previous program and want to make sure that 

your settings do update any existing ones it is a good idea to disable the PWM lines before you use them. That is: 

mraa_pwm_context pwm0 = mraa_pwm_init(20); 

mraa_pwm_context pwm1 = mraa_pwm_init(14); 

mraa_pwm_context pwm2 = mraa_pwm_init(0); 

mraa_pwm_context pwm3 = mraa_pwm_init(21); 

mraa_pwm_enable(pwm0,0 ); 

mraa_pwm_enable(pwm1,0 ); 

mraa_pwm_enable(pwm2,0 ); 

mraa_pwm_enable(pwm3,0 ); 

  

How Fast? 

Of course in most cases the whole point is to vary the duty cycle or the period of the pulse train for reasons that 

will be discussed later. 

Occasionally the issue of how fast a pulse can be created and this is a surprisingly difficult question to answer.  

If you try to use the max and min period functions to discover the values using something like: 

printf("min %d \n", mraa_pwm_get_min_period ()); 

printf("max %d \n", mraa_pwm_get_max_period ()); 

which will print to the Eclipse console, you will see 

min 1  

max 218453 

or 1 to around 0.22 seconds. 

Which corresponds to a max frequency of 1MHz and a minimum frequency of around 4.6Hz.  



The next question is how fast can you change the characteristic of a PWM line? In other words how fast can you 

change the duty cycle say? 

There is no easy way to give an exact answer but if you change the duty cycle in a tight loop you will discover that 

a period of 12 microseconds gives a train with one pulse of each type: 

 mraa_pwm_context pwm0 = mraa_pwm_init(20); 

 mraa_pwm_enable(pwm0,0 ); 

 mraa_pwm_period_us(pwm0, 12); 

 mraa_pwm_enable(pwm0,1 ); 

 for (;;) { 

  mraa_pwm_write(pwm0, 0.5f); 

  mraa_pwm_write(pwm0, 0.25f); 

 } 

 return MRAA_SUCCESS; 

} 

What this means is that the pulse duty cycle is being changed at the same rate as the pulses are generated. 

Increasing or decreasing the period slightly and the result is a slow phase shift. You can therefore infer that the 

time to update is about 12 microseconds. Which is in line with the shortest pulse times on the SYSFS driven GPIO 

lines. 

As in the case of the GPIO lines you can't expect to make changes to more than one line in 12 microseconds. Each 

change that you make takes around that time. 

For PWM lines in many uses this isn't a problem because the pulse time is typically milliseconds and 12 

microseconds is more than fast enough. However there are PWM applications - e.g. pulse width coding - where it 

could be a real problem.  

Uses of PWM - Driving LEDs 

What sorts of things do you use PWM for? 

There are lots of very clever uses for PWM. For example you can already use it to create pulse trains that would be 

difficult to create in any other way - a one microsecond pulse train for example.  

However there are two use cases which account for most PWM applications - power modulation and signaling to 

servos. 

The first, power modulation, is more simply put as "dimming an LED". By changing the duty cycle of the PWM 

pulse train you can set the amount of power delivered to an LED, or any other device, and hence change its 

brightness.  

The amount of power delivered to a device by a pulse train is proportional to the duty cycle. A pulse train that has 

a 50% duty cycle is delivering current to the load only 50% of the time and this is irrepective of the pulse 

repetition rate. 

So duty cycle controls the power but the period still matters in many situations because you want to avoid any 

flashing or other effects - a higher frequency smooths out the power flow at any duty cycle.  

You can use a PWM supply to control the brightness of an LED for example, or the rotation rate of a DC motor. 

The only differences in applications such as these are to do with the voltage and current you need to control and 

the way duty cycle relates to what ever the physical effect is.  

For example for an LED we might use a 5V supply and a current of a few tens of milliamps. In the case of an LED 

the connection between duty cycle and brightness is a complicated matter but the simplest approach uses the fact 



that the perceived brightness is roughly proportional to the cube of the input power. The exact relationship is more 

complicated but this is good enough for most applications. As the power supplied to the LED is proportional to the 

duty cycle we have: 

b=kd
3
 

where b is the perceived brightness and d is the duty cycle. 

Notice that as the LED is either full on or full off there is no effect of the change in LED light output with current - 

the LED is always run at the same current.   

What all of this means is that if you want an LED to fade in a linear fashion you need to change the duty cycle in a 

non-linear fashion. Intuitively it means that changes when the duty cycle is small produce bigger changes in 

brightness than when the duty cycle is large.  

For a simple example we need to connect a standard LED to the PWM line. 

Given that all of the Edison's lines work at 1.8V and most LEDs need more voltage than this we also need a 

transistor to drive the LED. You could use an FET of some sort but for this sort of application an old fashioned 

Bipolar Junction Transistor works very well and is cheap and available in a through hole mount - i.e. it comes with 

wires.  

Almost any general purpose npn transistor will work but the 2N2222 is very common:  

 

You can use pin J20-1 to supply the 5V and pin J19-3 is ground. The PWM0 line is J18-7. If you are using the 

2N2222 then the pin outs are: 

 

And of course, as always the positive terminal on the LED is the long pin.  

Assuming that you have this circuit constructed then a simple PWM program to modify its brightness from low to 

high and back to low in a loop is;  



#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

int main() 

{ 

 mraa_pwm_context pwm0 = mraa_pwm_init(20); 

 mraa_pwm_enable(pwm0,0 ); 

 mraa_pwm_period_ms(pwm0,1); 

 mraa_pwm_enable(pwm0,1 ); 

 int w=1; 

 int inc=1; 

 for (;;) { 

  mraa_pwm_pulsewidth_us (pwm0, w); 

  w=w+inc; 

  if(w>100 || w<2)inc=(-1)*inc; 

  usleep(1000); 

 } 

 return MRAA_SUCCESS; 

} 

The basic idea is to set up a pulse train with a period of 1ms. Next in the for loop the duty cycle is set to 1 to 100 

microseconds and then 100 back down to 1 microsecond. Although this is just a duty cycle of around 0 to 10% it 

provides a good range of brightness. You can experiment with the limits for your LED. Notice that the way that 

the loop counts up and down is to use inc which is either 1 or -1 and using the age old trick of flipping between 1 

and -1 and back again by multiplying by -1.  

Changing the LED brightness 

What about a linear change in brightness? 

To achieve this reasonably accurately isn't difficult all we need to do is increase the power or equivalently the duty 

cycle in steps that are cubic. If we just use 0 to 10 cubed we get a pulse width  of 0 to 1000 which is ideal for our 

1ms pulse used in the previous example i.e. 0 to 100% duty cycle.   

If we were working with a simple microcontroller then at this point we would need to consider using a lookup 

table for the steps as a way of increasing the performance. The Edison however has plenty of number crunching 

power so a direct implementation is possible: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

int main() 

{ 

 mraa_pwm_context pwm0 = mraa_pwm_init(20); 

 mraa_pwm_enable(pwm0,0 ); 

 mraa_pwm_period_ms(pwm0,1); 

 mraa_pwm_enable(pwm0,1 ); 

 

 int w=0; 

 int b=0; 

 int inc=1; 

 for (;;) { 

  b+=inc; 

  w=b*b*b; 

  mraa_pwm_pulsewidth_us (pwm0, w); 

  if(w>=1000 || w<=0)inc=(-1)*inc; 

  usleep(40000); 

 } 

 return MRAA_SUCCESS; 

} 



As this produces 10 cubic steps a usleep of 40,000  makes each step last 4ms and so it takes 40ms to go from low 

to high.   

If you replace the delay with a value of 100,000 then you will get a 1 second cycle - which using only ten steps 

starts to look a little unsteady.  

You can increase the number of steps by simply dividing by a suitable factor. Dividing by 10 produces roughly 20 

cubic step to get to 1000. At this point you would probably decide that a lookup table is essential, but again the 

Edison has no problem doing floating point arithmetic for this sort of problem: 

float w=0; 

float b=0; 

float inc=1; 

for (;;) { 

 b+=inc; 

 w=b*b*b/10; 

 mraa_pwm_pulsewidth_us (pwm0,(int) w); 

 if(w>=1000 || w<=0)inc=(-1)*inc; 

 usleep(50000); 

} 

Notice that now as there are twice as many steps we only need each one to last half the time, i.e. 50,000 

microseconds.  

In most cases exactly how linear the response of the LED is is irrelevant. The only exception is when you are 

trying to drive LEDs to create a grey level or color display. 

Controlling a Servo 

Hobby servos, the sort used in radio control models, are very cheap and easy to use and the Edison has enough 

PWM lines to control four of them without much in the way of extras.  

A basic servo has just three connections - usually ground and power line and a signal line. The colors used vary 

but the power is usually red and the ground line is usually black or brown. The signal line is white, yellow or 

orange.  

  

 

The power wire has to be connected to 5V supply capable of providing enough current to run the motor - anything 

up to 500mA or more depending on the servo.  

The good news is that the servo signal line generally needs very little current, although it does need to be switched 

between 0 and 5V using a PWM signal. 



You can assume that the signal line needs to be driven as a voltage load and so the appropriate way to drive the 

servo is: 

 

  

The 10K resistor R1 can be a lot larger for most servos - 47K often works.  

Now all we have to do is set the PWM line to produce 20ms pulses with pulse widths ranging from 1 to 2 ms.   

If you implement this as a simple program you will discover that the servo does nothing at all - apart perhaps from 

vibrating.  

The reason is that the transistor voltage driver is an inverter. When the PWM line is high the transistor is fully on 

and the servo's pulse line is effectively grounded. When the PWM line is low the transistor is fully off and the 

servo's pulse line is pulled high by the resistor.  

A common solution to this problem is to drive the servo using an emitter follower configuration, but in this case 

this isn't possible because the maximum voltage an emitter follower configuration would generate is 1.8-0.6=1.2V, 

which is too low to drive most servos.  

The standard solution in this case is to use two transistors to generate a non-inverted pulse but it is possible to use 

a single transistor in a non-inverting configuration - see the chapter Life at 1.8V. 

The simplest solution of all is to ignore the problem in hardware and solve the problem in software.  

Instead of generating 20ms pulses with pulse widths 1 to 2ms, you can generate an inverted pulse with 20ms 

pulses with widths in the range 18 to 19 ms.  

The following program moves the servo between its two extreme positions and back again: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

 

int main() 

{ 

 mraa_pwm_context pwm3 = mraa_pwm_init(21); 

 mraa_pwm_enable(pwm3,0 ); 

 mraa_pwm_period_ms(pwm3,20); 

 mraa_pwm_enable(pwm3,1 ); 



 for (;;) { 

  mraa_pwm_pulsewidth_us (pwm3,20000-1000); 

  sleep(4); 

  mraa_pwm_pulsewidth_us (pwm3,20000-1500); 

  sleep(4); 

  mraa_pwm_pulsewidth_us (pwm3,20000-2000); 

  sleep(4); 

 } 

 return MRAA_SUCCESS; 

} 

If you run this program you should find that the servo moves as promised - however it might not reach its limits of 

movement. Servos differ in how they respond to the input signal and you might need to calibrate the pulse widths. 

Many robot implementations, for example, calibrate the servos to find their maximum movement using either 

mechanical switches to detect when the servo is at the end of its range or a vision sensor.  

You can see from the logic analyser plot that the PWM pulse train is "inverted" as desired. 

 

  

 You can also see that the values used for the period and for the pulse width could do with some adjustment to 

bring them closer to the target values. In practice, however, servo calibration is the better answer.  

Given that the Edison has four PWM lines you can drive four servos without any additional hardware. Beyond 

four servos and you most likely need to use one of the many servo boards that are available. For 

example, SparkFun has an eight-line PWM board that is driven by the Edison's I2C bus - which is the subject of 

the next chapter. 

  

What Else Can You Use PWM For? 

PWM lines are incredibly versatile and it is always worth asking the question "could I use PWM?" when you are 

considering almost any problem.  

The LED example shows how you can use PWM as s power controller. You can extend this idea to a computer 

controlled switch mode power supply. All you need is a capacitor to smooth out the voltage and perhaps a 

transformer to change the voltage. 

The same idea can be used as a crude D to A converter.   

Change the LED for an 8 ohm loudspeaker and you have a way of generating sound. At its simplest you can feed 

the PWM signal into the speaker unmodified and create "space" sounds. However you can also add a filter and 

work at a higher pulse rate to create higher quality audio - and all without a USB dongle in sight. 

You can also use PWM to control the speed of a DC motor and if you add a simple bridge circuit you can control 

its direction and speed.  

Finally, you can use a PWM signal as a modulated carrier for data communications. For example, most infrared 

controller make use of a 38KHz carrier, which is roughly a 26 microseconds. This is switched on and off for 1ms 

https://www.sparkfun.com/products/13042


and this is well within the range that the Edison PWM can manage. So all you have to do is replace the red LED in 

the previous circuit with an infrared LED and you have the start of a remote control or data transmission link. 

 

Exploring Edison - I2C Bus 

The I2C bus is one of the most useful ways of connecting moderately sophisticated sensors and peripherals to the Edison. 

The only problem is that it can seem like a nightmare confusion of hardware, low level interaction and high level software. 

There are few general introductions to the subject because at first sight every I2C device is different, but here we present 

one. 

The I2C bus is a serial bus that can be used to connect multiple devices to a controller. It is a simple bus that uses 

two active wires - one for data and one for a clock. Despite there being lots of problems in using the I2C bus 

because it isn't well standardized and devices can conflict and generally do things in there own way it is still 

commonly used and too useful to ignore.  

The big problem in getting started with the I2C bus is that you will find it described at many different levels of 

detail - from physical bus characteristics, the protocol, the details of individual devices. It can be difficult to relate 

all of this together and produce a working anything. 

In fact you only need to know the general workings of the I2C bus, some general features of the protocol and know 

the addresses and commands used by any particular device.  

To explain and illustrate these idea we really do have to work with a particular device to make things concrete. 

However the basic stages of getting things to work - the steps, the testing and verification - are more or less the 

same irrespective of the device.   

I2C Hardware Basics  

The I2C bus is very simple. 

Just two signal lines SDA and SCL the data and clock lines respectively. 

The each single line is pulled up by a suitable resistor to the supply line at what ever voltage the devices are 

working at 3.3V and 5V are common choices but it could be 1.8V as well, The size of the pullup resistors isn't 

critical, but 4.7K is typical as shown.   

You simply connect the SDA and SCL pins of each of the devices to the pull up resistors. Of course if any of the 

devices have built-in pullup resistors you can omit the external resistors. More of a problem is if multiple devices 

each have pull ups. In this case you need to disable all but one set.  



The I2C bus is an open collector bus. 

This means that it is actively pulled down by a transistor set to on. When the transistor is off, however, the bus 

returns to the high voltage state via the pullup resistor. The advantage of this approach is that multiple devices can 

pull the bus low at the same time. That is an open collector bus is low when one or more devices pulls it low and 

high when none of the devices is active.  

The SCL line provides a clock which is used to set the speed of data transfer - one data bit is presented on the SDA 

line for each pulse on the SCL line.  

In most cases the I2C bus has a single master device - the Edison in our case - which drives the clock and invites 

the slaves to receive or transmit data. Multiple masters are possible, but this is advanced and not often necessary. 

The Edison cannot work with multiple masters. 

At this point we could go into the details of how all of this works in terms of bits. However, the Edison and the 

mraa software handles these details for us. All you really need to know is that all communication occurs in 8-bit 

packets. 

The master sends a packet, an address frame, which contains the address of the slave it wants to interact with. 

Every slave has to have a unique address - usually 7 bits but it can be 11 bits and the Edison does support this. 

One of the problems in using the I2C bus is that manufacturers often use the same address or same set of selectable 

addresses and this can make using particular combinations of devices on the same bus difficult or impossible. 

The 7-bit address is set as the high order 7 bits in the byte and this can be confusing as an address that is stated as 

0x40 in the data sheet results in 0x80 being sent to the device.  

After sending an address frame it then sends or receives data frames back from the slave, There are also special 

signals used to mark the start and end of an exchange of packets but the Edison takes care of these.  

This is really all you need to know about I2C in general to get started but it is worth finding out more of the details 

as you need them - you almost certainly will need them as you debug I2C programs.  

Edison I2C  

The Edison supports two I2C buses but only one is usable on the Arduino breakout board. For this reason it is 

better to use I2C-1 unless you have a very good reason not to.  

The pins used on the mini-breakout board, including ground and power lines that are concerned with I2C:   

  

  

MRAA Number Physical Pin 
Edison Pin 

(SYSFS) 
Pinmode0 Pinmode1 

6 J17-7 GP27 GPIO-27 I2C-6-SCL 

7 J17-8 GP20 GPIO-20 I2C-1-SDA 

8 J17-9 GP28 GPIO-28 I2C-6-SDA 

19 J18-6 GP19 GPIO-19 I2C-1-SCL 

29 J19-2 V_V1P80 
  

30 J19-3 GND 
  

42 J20-1 V_VSYS 
  

43 J20-2 V_V3P30 
  



  

As we are going to use a 1.8V sensor and I2C bus 1 the pins that we are going to use are: 

Physical Pin   

J17-8 I2C-1-SDA 

J18-6 I2C-1-SCL 

J19-2  V_V1P80 

J19-3  GND 

The I2C MRAA Functions 

The I2C mraa functions are confusing for the usual reason that there are a lot of different options. Let's look at 

them in groups that do something similar and in the order that you would generally use them. 

The first thing you have to do is initialize the bus you are going to use. 

There are two init functions: 

mraa_i2c_context i2c=mraa_i2c_init (int bus) 

 

mraa_i2c_context i2c=mraa_i2c_init_raw (unsigned int bus)  
  

For the Edison min-breakout board you can use bus 1 or 6 in either function. 

  

For example:  

  
mraa_i2c_context i2c=mraa_i2c_init (1);  

  

will initialize bus 1 and return a context in i2c. If the bus cannot be initialized then the context is NULL.  

Initializing the bus has to be done at the start of any use of the I2C bus, but once you have a context you can use it 

without having to reinitialize the bus.  

When you have finished using the bus you can call the function: 

 mraa_i2c_stop (mraa_i2c_context dev) 

  

Each device on the I2C bus has to have a unique 7-bit address.  After initializing the bus and before you send any 

data you have to set the address of the device you want to interact with:  

mraa_result_t  mraa_i2c_address (i2c, uint8_t address)  

  

You can look up the address that each device responds to in its datasheet. Don't worry about any of the low-level 

descriptions of the way the least significant bit is used to determine if a read or a write is in operation - this is often 

reported in datasheets as one address for write and one for read. You also need to keep in mind that the 7-bit 

address is sent as the high order bits in the byte.  



For example, a device might report an address of 0x40 on its data sheet. On the bus this would translate to a write 

address of 0x80 for write and a read address of 0x81 i.e. to write device 0x40 you send 0x80 and to write to it you 

send 0x81. 

For mraa set the 7-bit address and the functions will take care of what code to actually put on the bus i.e. use 0x40 

and mraa will make the necessary changes.  

Also notice that neither the init or the address function actually causes anything to happen on the I2C bus. They 

simply set parameters which are used in the subsequent function calls. In particular if you are looking at the I2C 

bus with a logic analyser or similar you will seen nothing happen when you use init or address. 

Write 

There are four write functions: 

mraa_i2c_write_byte (i2c, const uint8_t data)  

 

mraa_i2c_write (i2c, const uint8_t *data, int length) 

 

mraa_i2c_write_byte_data (i2c,  

       const uint8_t data, 

      const uint8_t command) 

 

mraa_i2c_write_word_data (i2c,  

   const uint16_t data, 

     const uint8_t command)  

  

By far the simplest of these is the first one, which writes a single byte of data to the device. How this byte is used 

by the device generally depends on many things, but it is important to realise that this function actually sends two 

bytes to the device - an address frame and a data frame. 

The address frame is a byte containing the address of the device you set earlier and the data byte is the one you 

have just specified in the function call.  

Notice that mraa takes care of all of the details of the protocol. 

If you know about the I2C protocol then it is worth saying that mraa deals with the start sequence, the address 

frame with the write bit set to zero; it checks the NAK/ACK bit from the slave, sends the data bit, checks the 

NAK/ACK bit from the slave and sends the stop sequence.  

If you want to send more than a single byte then you need to use one of the other write functions. 

mraa_i2c_write (i2c, const uint8_t *data, int length) 

  

will write multiple bytes in exactly the same way as the write_byte function. 

That is, if you set up a buffer with three bytes: 

uint8_t buf[3]; 

//store data in buf 

mraa_i2c_write (i2c,buf,3); 

  



will first send an address frame as in the case of write_byte and then follow it up with three data frames containing 

the data in the buffer.  

Notice that this is different to sending three bytes using write_byte three times. The write function only sends one 

address frame and then multiple data frames. Each time you use the write_byte function an address frame is send 

and a single data frame.  

Which one of these functions you use depends on whether the device wants a single byte at a time or a set of 

bytes.  

The final two write functions implement a standard interaction between master and slave - writing data to a 

register. Many devices have internal storage, indeed some I2C devices are nothing but internal storage, e.g. I2C 

EPROMs. In this case a standard transaction is: 

1. send address frame 

2. send  a data frame with the command to select the register 

3. send a data frame containing the byte or word to be written to the register.  

The write_byte_data command writes to a byte register and the write_word_data command writes a word (2 bytes) 

to a 16-bit register: 

mraa_i2c_write_byte_data (i2c,  

  const uint8_t data, const uint8_t command) 

 

mraa_i2c_write_word_data (i2c,  

  const uint16_t data, const uint8_t command) 
  

Notice the command that has to be sent depends on the device and you have to look it up in its datasheet.  

It is also worth knowing that: 

mraa_i2c_write_byte_data (i2c, data, command) 

  

is equivalent to: 

uint8_t buf[2]; 

buf[0]=command; 

buf[1]=data; 

mraa_i2c_write (i2c,buf,2); 

  

Next we have to look at how to read data from the device. Notice that in many transactions a read has to be 

preceded by a write that tells the device what data you want. 

Read 

There are five read functions and they broadly copy what the write functions do:  

int mraa_i2c_read (i2c, uint8_t *data, int length) 

 

uint8_t mraa_i2c_read_byte (ic2) 

 

uint8_t mraa_i2c_read_byte_data (i2c, const uint8_t command) 

 

uint16_t  mraa_i2c_read_word_data (i2c, const uint8_t command) 

 



int mraa_i2c_read_bytes_data (i2c, uint8_t command, 

uint8_t                                                 *data, int length) 
  

As in the case of read the simplest write function is: 

uint8_t mraa_i2c_read_byte (ic2) 
  

This sends an address frame and then reads a single byte from the slave. As with the write function mraa takes care 

of all of the protocol necessary to send and receive the packets. You also have to use the "write" address of the 

device the function automatically sets the low order read bit for you.  

If you want to read multiple bytes then you can use the function: 

int mraa_i2c_read (i2c, uint8_t *data, int length)  

  

You simply have to supply a buffer of the correct length and specify the nubmer of bytes to be read.  

There are also three functions for reading data from a register: 

uint8_t mraa_i2c_read_byte_data (i2c, 

                   const uint8_t command) 

 

uint16_t  mraa_i2c_read_word_data (i2c,  

                   const uint8_t command) 

 

int mraa_i2c_read_bytes_data (i2c, 

  uint8_t command, uint8_t *data, int length)  

  

This works as per the register read functions where you specify the register as the command parameter. 

When reading data you can read a byte and a word register and in addition a register of any size using 

read_bytes_data. In this case you supply a buffer and a number of bytes to read 

Slow Read 

This raises for the first time the question of how we cope with the speed that a slave can or cannot respond to a 

request for data.  

There are two broad approaches to waiting for data on the I2C bus. 

The first is simply to request the data and then perform reads in a polling loop. If the device isn't ready with the 

data then it sends a data frame with a NAK bit set. The mraa read functions return a zero if it fails or the data if it 

doesn't. Of course the polling loop doesn't have to be "tight". The response time is often long enough to do other 

things and you can use the I2C bus to work with other slave devices while the one you activated gets on with 

trying to get you the data you requested. All you have to do is to remember to read its data at some later time. 

The second way is to allow the slave to hold the clock line low after the master has released it. In most cases the 

master will simply wait before moving on to the next frame while the clock line is held low. The Edison I2C bus 

implements this clock stretching protocol and it will wait until the slave releases the clock line before proceeding. 



This is very simple and it means you don't have to implement a polling loop but also notice that your program is 

frozen until the slave releases the clock line.  

Many devices implement both types of slow read protocol and you can use which ever suits your application.  

There is also the small matter of the speed of the I2C clock. In principle the clock can run at almost any speed but 

in practice this usually isn't the case. Most slave devices don't have strict clock rate that have to be used with them 

as they are designed as static devices synced to whatever SCL clock rate the master cares to use. If it turns out to 

be too fast then most will use clock stretching. In extreme cases it may be necessary to slow down or even speed 

up the master's clock. 

There is an mraa function to do this:  

mraa_i2c_frequency (i2c,mode)  
  

This works with the Edison if you are using the latest mraa library. You can set one of three modes: 

• MRAA_I2C_STD Standard mode  100Kb/s 

 

• MRAA_I2C_FAST Fast mode 400Kb/s 

 

• MRAA_I2C_HIGH High-speed mode  3.4Mb/s 

  

By default the Edison works in Fast mode and you can select standard but at the time of writing high doesn't seem 

to work.  

FSYS Linux I2C Commands 

As with most Linux hardware, the necessary drivers represent the hardware as files. This is how it is with I2C and 

a collection of I2C tools that you can use from the command line are available. Sometimes these are useful, but in 

the case of the Edison they tend not to work as well as you might hope - and particularly so with I2C 6. 

My advice is not to rely on the information you get back from the Linux tools because they often fail to detect 

devices that actually exist on the bus.  

The commands available are: 

To scan the bus report devices connected: 

i2cdetect   

To dump registers: 

i2cdump 

To read a device register: 

i2cget 
To set a device register: 

i2cset  



For example, to scan the buses installed you can use: 

i2cdetect -l 

This will list eight possible I2C buses on the Edison. Of course, for hardware reasons ,you can only use 2, I2C-1 

and I2C-6. 

To list all of the devices connected to a bus you can use: 

i2cdetect -r 1  

which scans bus 1. Notice this often results in a crash. 

  

To dump all the registers in a particular device on I2C-1 use: 

i2cdump 1 address w 
  

To read a particular register on a particular device use:  

i2cget 1 address register w 

  

Finally to set a particular register on a particular device use: 

i2cset 1 address register data w 
  

Some programmers like using these commands to check that slave devices are present and working. Personally I 

would prefer to write a C program simply because the results are more reliable. 

If you want to know more about the Linux i2c tools consult the man pages.  

Using I2C devices is fairly easy once you have successfully used one - and hence know what information you need and what 

to look for in a working system. In this chapter we use the HTU21D temperature and humidity sensor as a case study of I2C 

in action. It also happens to be a useful sensor. 

Using an I2C device has two problems - the physical connection between master and slave and second figuring out 

what the software has to do to make it work. In this chapter we take the principle outlined in the previous one , see 

Exploring Edison - I2C Bus, and add the information in the HTU21D data sheet to make a working temperature 

humidity sensor using mraa.  

There is a C++ implementation of the HTU21D in the upm library and you can use this if it is more appropriate to 

your project. In this case it is the details of the implementation that is important.  

First the hardware. 

The SparkFun HTU21D 

The HTU21D Humidity and Temperature sensor is one of the easiest of I2C devices to use with the Edison mini 

breakout board. The reason is that it works at 1.5V and therefore works with the Edison's 1.8V logic and use its 

http://www.i-programmer.info/programming/hardware/9124-exploring-edison-i2c-bus.html


power supply. This means you don't have to worry about level shifting and this simplifies your first encounter with 

I2C and provides an attractive way to measure temperature and humidity in a very small package.  

The only problem is that the HTU21D is only available in a surface mount package. To overcome this simply 

solder some wires onto the pads, it is possible to do, or you can buy a general breakout board. 

However, it is much simpler to buy the SparkFun HTU21D breakout board because this has easy connections and 

built-in pull up resistors. This means that you don't need to add any components to get this circuit working - just 

four connections. 

 

https://www.sparkfun.com/products/12064 

Don't worry about the fact that board and the documentation suggests that this only works at 3.3V - it works "best" 

at 3.3V, but it also works at 1.8V. If you use the HTU21D breakout then for prototyping the only thing you have to 

do is solder some pins or wires to the pads. 

If you decide to work with some other I2C device you can still follow the steps in this account, but you would 

have to modify what you do to be correct for the device you are using. In particular if you select a device that 

works at 3.3V or 5V you need a level convertor and you might also need pull-up resistors.   

  

Wiring the HTU21D 

As we are going to use a 1.8V sensor and I2C bus 1 the pins that we are going to use are: 

  

Physical Pin   

J17-8 I2C-1-SDA 

J18-6 I2C-1-SCL 

J19-2  V_V1P80 

J19-3  GND 

  

Given that the HTU21D has pull up resistors and works at 1.8V connecting it to I2C 1 on the Edision is trivial: 

https://www.sparkfun.com/products/12064


 

You can use a prototype board to make the connections and this makes it easier to connect other instruments such 

as a logic analyser.  

A First Program  

After wiring up any i2C device the first question that needs to be answered is - does it work?  

Unfortunately for most complex devices finding out if it works is a multi-step process.  

Our first program will aim to read some data back from the HTU21D - any data will do.  

If you look at the data sheet you will find that the device address is 0x40 and its  supports the following 

commands: 

Command  Code  Comment  

Trigger Temperature Measurement 0xE3  Hold master 

Trigger Humidity Measurement 0xE5  Hold master 

Trigger Temperature Measurement 0xF3  No Hold master 

Trigger Humidity Measurement  0xF5  No Hold master 

 Write user register 0xE6  
 

 Read user register 0xE7  
 

 Soft Reset 0xFE 
 

  

The easiest of these to get started with is the Read user register command. The user register gives the current setup 

of the device and can be used to set the resolution of the measurement.  

Notice that the codes that you send to the device can often be considered addresses or commands. In this case you 

can think of sending 0xE7 as a command to read the register or the read address of the register - it makes no 

difference. In most cases the term command is used when sending the code makes the device do something and 

and the term address is used when it simply makes the device read or write specific data.       

To read the user register we have to write a byte containing 0xE7 and then read the byte the device sends back. 

Notice that means sending an address frame, a data frame and then another address frame and reading a data 

frame.  

You can do this in two ways. The first is to use raw byte read and write commands: 



mraa_i2c_context i2c; 

i2c = mraa_i2c_init(1); 

mraa_i2c_address(i2c, 0x40); 

mraa_i2c_write_byte(i2c,0xE7); 

uint8_t data = mraa_i2c_read_byte(i2c); 

printf("Register= %d \n", data); 

  

This program sets up I2C-1, sets the address to 0x40 and then sends 0xE7 and immediately reads a byte that the 

device sends back.   

If you run this program you will see:  

Register= 66 

this is the default value of the register and it corresponds to a resolution of 12 and 14 bits for the humidity and 

temperature respectively. 

In Detail 

If you have a logic analyser that can interpret the I2C protocol connected, what you will see is: 

 

  

You can see that the write_byte function sends an address packet set to the device's 7-bit address 0x40 as the high 

order bits and the low order bit set to zero to indicate a write. After this you get a data packet containing 0xE7. 

After a few milliseconds it sends the address frame again only this time with the low order bit set to 1 to indicate a 

read and it then receives back a single byte of data from the device - the 0x42 corresponding to the 66 decimal 

reported. 

As this is a standard send a command/register address and receive back a single byte we can perform exactly the 

same task using the read_byte_data  function which does the write and the read as a single operation: 

mraa_i2c_context i2c; 

i2c = mraa_i2c_init(1); 

mraa_i2c_address(i2c, 0x40); 

uint8_t data =mraa_i2c_read_byte_data (i2c, 0xE7); 

printf("Register= %d \n", data); 

If you run this program you will get the same result. However if you look at the logic analyser result you will see: 

  



 

  

The same address and data frames are sent and received but now there is no delay between the first two and the 

last two.  

This is the advantage of using the command oriented mraa functions.  

Reading the raw temperature data 

Now we come to reading one of the two quantities that the device measures - temperature. If you look back at the 

command table you will see that there are two possible commands for reading the temperature:  

  

Command  Code  Comment  

Trigger Temperature Measurement 0xE3  Hold master 

Trigger Temperature Measurement 0xF3  No Hold master 

  

What is the difference between Hold master and No Hold master? 

This was discussed in the previous chapter in a general setting. The device cannot read the temperature 

instantaneously and the master can either opt to be held waiting for the data, i.e. hold master, or released to do 

something else and poll for the data until it is ready. 

The hold master option works by allowing the device to stretch the clock pulse by holding the line low after the 

master has released it. In this mode the master will wait until the device releases the line. 

Not all masters support this mode but the Edison does and this makes this the simplest option.  

To read the temperature using the Hold master mode you simply send 0xE3 and then read three bytes. As with the 

simple read register command there are two ways of doing this.  

You can use the write_byte function to send the command and then use the read function to read three bytes. 

Notice you cannot use the read_byte function three times to read the bytes the device sends because this would 

send three address frames rather than the one required.  

The program is: 

uint8_t buf[3]; 

mraa_i2c_write_byte(i2c,0xE3); 

mraa_i2c_read(i2c, buf, 3); 

uint8_t msb= buf[0]; 

uint8_t lsb= buf[1]; 



uint8_t check= buf[2]; 

printf("msb %d \n lsb %d \n checksum %d \n", msb,lsb,check); 

The buffer is unpacked into three variables with more meaningful names - the msb most significant byte, lsb - least 

significant byte and the check(sum).  

You should see something like: 

msb 97  

lsb 232  

checksum 217 

with the temperature in the 20C range.  

The logic analyser reveals what is happening. 

First we send the usual address frame and write the 0xE3. Then after a pause the read address frame is sent and the 

clock line is held low by the device (lower trace): 

  

 

  

The clock line is held low by the device for over 42ms while it gets the data ready. It is released and the three data 

frames are sent:   

  

 

  

The second way of doing the job sends the command and gets the data in one operation: 

mraa_i2c_read_bytes_data(i2c,0xE3,buf,3); 

uint8_t msb= buf[0]; 

uint8_t lsb= buf[1]; 

uint8_t check= buf[2]; 

printf("msb %d \n lsb %d \n checksum %d \n", 

                  msb,lsb,check); 

The only difference is that now there is no pause between sending the command 0xE3 and the read address frame - 

we still have to wait more than 42ms for the data however.  

Finally we have to find out how to use the No hold master mode of reading the data - it is sometimes useful.  



In this case we can't use the single read_bytes_data command because the data will not be ready to read and the 

master will not be forced to wait for it. We have to use the two-step send the command and read the data approach: 

mraa_i2c_write_byte(i2c,0xF3); 

uint8_t buf[3]; 

while(mraa_i2c_read(i2c, buf, 3)==0){}; 

uint8_t msb= buf[0]; 

uint8_t lsb= buf[1]; 

uint8_t check= buf[2]; 

printf("msb %d \n lsb %d \n checksum %d \n", 

                                msb,lsb,check); 

This polls repeatedly until the data is returned - notice that the read function returns zero if it has failed to read 

data. The big difference is that now we could do some other work in the while loop until the data is returned.  

Processing the data 

Our next task isn't really directly related to the problem of using the I2C bus but it is a very typical next step. The 

device returns the data in three bytes but the way that this data relates to the temperature isn't simple.  

If you read the data sheet you will discover that the temperature data is the 14-bit value that results by putting 

together the most and least significant byte and zeroing the bottom two bits. The bottom two bits are used as status 

bits - bit zero currently isn't used and bit one is a 1 if the data is a humidity measurement and a 0 if it is a 

temperature measurement.  

To put the two bytes together we use: 

unsigned int data16=((unsigned int) msb << 8) |  

                    (unsigned int) (lsb & 0xFC); 

This zeros the bottom two bits, shifts the msb up eight bits and Ors the two together. The result is a 16 bit 

temperature value with the bottom two bits zeroed.  

Now we have raw temperature value but we have still have to convert it to standard units. The datasheet gives the 

formula 

Temp in C = -46.85 + 175.72 * data16 / 2
16

 

The only problem in implementing this is working out 2
16

. You can work out 2
x
 with the expression 1<<x i.e. shift 

1 x places to the right. This gives: 

float temp = (float)(-46.85 +  

      (175.72 * data16 / (float)(1<<16)));  

Of course 2
16

 is a constant that works out to 65536 so it is more efficient to write: 

 float temp = (float)(-46.85 +  

           (175.72 * data16 / (float)65536)); 

It is worth noting that the floating point arithmetic that the Edison provides makes all of this calculation very much 

easier than it would be on a small 8-bit micro controller. 

The final program is:  

int main() 

{ 

 mraa_i2c_context i2c; 



 i2c = mraa_i2c_init(1); 

 mraa_i2c_address(i2c, 0x40); 

 uint8_t data =mraa_i2c_read_byte_data (i2c, 0xE7); 

 printf("Register= %d \n", data);uint8_t buf[3]; 

 mraa_i2c_read_bytes_data(i2c,0xE3,buf,3); 

 uint8_t msb= buf[0]; 

 uint8_t lsb= buf[1]; 

 uint8_t check= buf[2]; 

 printf("msb %d \n lsb %d \n checksum %d \n", 

                                  msb,lsb,check); 

 unsigned int data16=((unsigned int) msb << 8) | 

  (unsigned int) (lsb & 0xFC); 

 float temp = (float)(-46.85 + 

                (175.72 * data16 / (float)65536)); 

 printf("Temperature %f C \n",temp);  

 return MRAA_SUCCESS; 

} 

  

Reading the humidity 

The nice thing about I2C and using a particular I2C device is that it gets easier. Once you have seen how to do it 

with one device the skill generalizes and once you know how to deal with a particular device other aspects of the 

device are usually similar.  

To read the humidity we can more or less use the same program, we just need to change the command and the 

formula for the final percentage humidity. 

The command needed to read the three data bytes is 0xE5 and the formula to convert the 16-bit value to percentage 

humidity is: 

RH= -6 + 125 * data16 / 2^16 

Putting all this together and reusing some variables from the previous program we have: 

mraa_i2c_read_bytes_data(i2c,0xE5,buf,3); 

msb= buf[0]; 

lsb= buf[1]; 

check= buf[2]; 

printf("msb %d \n lsb %d \n checksum %d \n", 

                               msb,lsb,check); 

data16=((unsigned int) msb << 8) | 

                  (unsigned int) (lsb & 0xFC); 

float hum = (float)(-6 +  

             (125.0 * data16 / (float)65536)); 

printf("Humidity %f %% \n",hum); 

The only unusual part of the program is using %% to print a single % character - necessary because % means 

something in printf. 

Checksum calculation 

Although computing a checksum isn't specific to I2C, it is another common task. 

The datasheet explains that the polynomial used is: 

X
8
+X

5
+X

4
+1 



Once you have this information you can work out the divisor by writing a binary number with a one in each 

location corresponding to a power of X in the polynomial - i.e. the 8th, 5th, 4th and 1st bit. 

Hence the divisor is 0x0131.  

What you do next is roughly the same for all CRCs. First you put the data that was used to compute the checksum 

together with the checksum value as the low order bits: 

uint32_t data32 = ((uint32_t)msb << 16)| 

                    ((uint32_t) lsb <<8) |  

                       (uint32_t) check; 

  

Now you have three bytes, i.e 24 bits in a 32-bit variable. 

Next you adjust the divisor so that its most significant non-zero bit aligns with the most significant bit of the three 

bytes. As this divisor has a one at bit eight it needs to be shifted 15 places to the right to move it to be the 24th bit: 

uint32_t divisor = ((uint32_t) 0x0131) <<15; 

Now that you have both the data and the divisor aligned, you step through the top-most 16 bits, i.e. you don't 

process the low order eight bits which is the received checksum. For each bit you check to see if it is a one - if it is 

you replace the data with the data XOR divisor. In either case you shift the divisor one place to the right: 

for (int i = 0 ; i < 16 ; i++){ 

 if( data32 & (uint32_t)1<<(23 - i) ) 

                   data32 =data32 ^ divisor; 

 divisor=divisor >> 1; 

}; 

When the loop ends, if  there was no error, the data32 should be zeroed  and the received checksum is correct and 

as computed on the data received.  

A complete function to compute the checksum with some optimizations is: 

uint8_t crcCheck(uint8_t msb, uint8_t lsb, uint8_t check){ 

 uint32_t data32 = ((uint32_t)msb << 16)|  

         ((uint32_t) lsb <<8) |  

                 (uint32_t) check; 

 uint32_t divisor = 0x988000; 

 for (int i = 0 ; i < 16 ; i++){ 

  if( data32 & (uint32_t)1<<(23 - i) ) 

                         data32 ^= divisor; 

  divisor>>= 1; 

 }; 

 return (uint8_t) data32; 

} 

It is rare to get a crc error on an I2C bus unless it is overloaded or subject to a lot of noise.  

The Complete Program 

The complete program including crc checks is: 

  



#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

uint8_t crcCheck(uint8_t, uint8_t, uint8_t); 

int main() 

{  

 mraa_i2c_context i2c; 

 i2c = mraa_i2c_init(1); 

 mraa_i2c_address(i2c, 0x40); 

 uint8_t data =mraa_i2c_read_byte_data (i2c, 0xE7); 

 printf("Register= %d \n", data); 

 uint8_t buf[3]; 

 mraa_i2c_read_bytes_data(i2c,0xE3,buf,3); 

 uint8_t msb= buf[0]; 

 uint8_t lsb= buf[1]; 

 uint8_t check= buf[2]; 

 printf(" msb %d \n lsb %d \n checksum %d \n", 

                                  msb,lsb,check); 

 printf("crc %d \n ", crcCheck(msb,lsb,check)); 

 unsigned int data16=((unsigned int) msb << 8) | 

                       (unsigned int) (lsb & 0xFC); 

 float temp = (float)(-46.85 + 

                 (175.72 * data16 / (float)65536)); 

 printf("Temperature %f C \n",temp); 

 mraa_i2c_read_bytes_data(i2c,0xE5,buf,3); 

 msb= buf[0]; 

 lsb= buf[1]; 

 check= buf[2]; 

 printf(" msb %d \n lsb %d \n checksum %d \n", 

                                    msb,lsb,check); 

 printf("crc %d \n ", crcCheck(msb,lsb,check)); 

 data16=((unsigned int) msb << 8) |  

                    (unsigned int) (lsb & 0xFC); 

 float hum = (float)(-6 +  

                (125.0 * data16 / (float)65536)); 

 printf("Humidity %f %% \n",hum);return MRAA_SUCCESS; 

} 

 

uint8_t crcCheck(uint8_t msb, uint8_t lsb, uint8_t check){ 

 uint32_t data32 = ((uint32_t)msb << 16)| 

            ((uint32_t) lsb <<8) | 

               (uint32_t) check; 

 uint32_t divisor = 0x988000; 

 for (int i = 0 ; i < 16 ; i++)  

 { 

  if( data32 & (uint32_t)1<<(23 - i) ) 

                          data32 ^= divisor; 

  divisor>>= 1; 

 }; 

 return (uint8_t) data32; 

} 

Of course this is just the start. 

Once you have the device working and supplying data it is time to write your code in the form of functions that 

return the temperature and the humidity and generally make the whole thing more useful and easier to maintain.  

This is often how this sort of programming goes - at first you write a lot of inline code so that it works as fast as it 

can then you move blocks of code to functions to make the program more elegant and easy to maintain checking at 

each refactoring that the programming still works.  



  

Where Next 

The I2C bus is useful, but there are are other less standard buses that prove to be useful for one off devices. In the 

next chapter we look at the first problem we have to solve - working with 1.8V logic. The problem is that while 

there might be 1.8V I2C devices other less standard buses tend to work at 5V or 3.3V. So before moving on it is 

worth spending some time looking at how to inter-work 1.8V with 5V and 3.3V logic.  

 

Exploring Edison - Life At 1.8V 

One of the big problems with using the Edison, or so many believe, is that in its "raw" form it works with 1.8V logic. In 

practice this isn't as big a problem as you might imagine. Often you don't have to do anything and when you do it is an easy 

and cheap fix.  

The Edison works with 1.8V logic. When you use it with the Arduino breakout board then there are logic level 

converters that save you from having to worry about this. If you want to make the best use of the Edison then you 

certainly have to avoid the Arduino breakout board and use the mini breakout board. However the mimi breakout 

board doesn't buffer or level shift the raw GPIO lines of the Edison. 

This means that you either have to find sensors and transducers that work with 1.8V logic or you have to 

implement level shifters of your own. Once you have done this a few time it becomes very easy and it is very 

cheap. 

The following descriptions of how things work are aimed at the reader who knows about basic physics - Ohm's 

Law say - but isn't an electronics expert.  

Logic Levels 

All logic implementation have a range of voltages that are regarded as a zero and a one. These are important 

specifications that you need to know to make sure that your implementation of logic or logic level shifting works 

in a wide range of situations.  

The diagram below summarizes the logic levels for the most commonly encountered systems. 

  



 

  

In each case the important numbers are Vih, Vil and Voh, Vol which give you the voltage range the inputs and 

outputs work with. For example for 1.8V logic Vih and Vil are 1.17V and 0.63V. That is if the input is 1.17V or 

greater it reads a one and if it is 0.63 or lower it reads a zero. The Voh and Vol figures give you the limits on the 

ouputs of the logic family. For example for 1.8V logic Voh is 1.35 and Vol is 0.45. What this means is that any 

1.8V device will output at least 1.35V for a one and at most 0.45V for a zero. 

You can see that these figures give you a margin of tolerance.  

It the output is low then it will be at most 0.45V and this is below the 0.63V needed by Vil which reads it as a 

zero.  

The Edison specification gives  

Vil as 0.35*Vdd and Vol as 0.45V which is exactly the standard as long as Vdd is 1.8V.  

Of course your level shifters and custom logic and aim for 1.8V for a one and 0V for a zero but the logic voltage 

levels tell you how accurate you have to be and what you can expect from the standard logic in the worst case.  

Output 1.8V To 3.3V and 5V 

For output level conversion the key figures are Voh and Vol. The GPIO line will be at least 1.35V when high and 

not more than 0.45V for a low.  

As we are talking about voltage levels there is a tendency to immediately think that a voltage controlled device 

such as a MOSFET is the obvious choice. However the difficulty is finding a MOSFET with a gate threshold 

voltage in the correct range. Most general purpose MOSFETs have too high a threshold voltage to be turned on by 

1.8V.  

Even if you find a MOSFET with a gate threshold voltage of 1.8V on average it is not going to be turned on 

sufficiently by the 1.8V on the GPIO line in the best case and in the worse case the GPIO line might be as low as 

1.3V and the MOSFET gate threshold could be 2V or more.  

Also note that the gate threshold is the minimum voltage need to make the MOSFET just start to conduct.  

There are specially made N Channel MOSFETS for use in 1.8V logic circuits. For example, the FDN327B is 

marketed as a 1.8V logic MOSFET. Its characteristics are: 



VGS(th) Gate Threshold Voltage min 0.4 avg 0.7 max 1.5 V 

Equally important is the figure:  

RDS(ON) = 120 mΩ @ VGS = 1.8 V  

which is the MOSFETS resistance at a gate voltage of 1.8V. A typical MOSFET has a higher on resistance at its 

quoted gate threshold voltage. You can see that in this case it is low enough to conduct a reasonable current at 

3.3V or 5V.  

Any MOSFET that you plan to use for a 1.8V level converter has to have parameters similar to or better 

the FDN327B. 

One big problem with the 1.8V MOSFETs is that they are generally surface mount components. This is not a huge 

problem in that in many case this is exactly what you want but it does make prototyping more difficult. If you want 

to use such MOSFETs then your choices are to buy a device pre-mounted on a breakout board, use a general 

purpose breakout board or solder some wires to the surface mount contacts. 

A good alternative to a MOSFET is an "old fashioned" Bipolar Junction Transistor - a BJT.  

The BJT often gets left out of introductory electronics courses because it is a current controlled device and this is 

more difficult to understand and work with. However in this case it has a big advantage. 

If you think of the silicon BJT as a simple 3-terminal switch then it switches on when the base reaches 0.6V 

relative to the emitter. If you compare this to the 1.8V logic thresholds you can see that it is a good fit and what is 

more any silicon npn transistor works in this way. 

That is you can use almost any general purpose npn transistor to convert 1.8V logic to 3.3V or 5V logic.  

In the rest of this chapter the 2N2222 transistor is used because it is common, cheap and available in a range of 

packages including through-hole, making it easy to use for prototyping. 

Output Level Conversion 

The most basic level converter has already been introduced in earlier chapters but it is worth repeating: 

 

When the Edison's output line is high the transistor conducts and there is an approximately 0.6V between the base 

and the emitter and hence 1,8-0.6=1.2V across R2. 



First, let's assume that the output line is set to strong - i.e. active pull up and active pull down. The problem here is 

that the default setting for the output line in the mini-breakout board is pull up using a 50K resistor. This can only 

provide a low current drive (0.25mA) and hence irrespective of the base resistor R2 the current in the load is only 

going to be around 1.5mA. Enough for some applications, but for others you need to switch the output mode to 

strong - see the final chapter.  

For the rest of this chapter it is assumed that the output mode is strong except for the circuits that work with open 

collector buses.  

The output line can provide 3mA so the smallest value of R2 you should use is 400 ohms i.e. 1.2/0.003. Although 

the diagram shows a value of 470 ohms you can use higher values to limit the current to lower values. 

Given that the 2N2222 always has a current gain of more than 50, if you put all of the output current into in the 

base, i.e. the current in the output line to I mA then the load can have up to 50*I mA roughly 150mA in this case 

of the example. In practice the load would take less than this because its current is limited by R1. 

The voltage drop across the transistor can be ignored as it is a few tenths of a volt, it is as if the LED is connected 

to ground when the transistor is full on. A red LED typically has a voltage drop of 2 volts and a working current of 

10-20mA - this is why we don't try to drive an LED directly from the 3mA limited output line. Thus the voltage 

across R1 is 5-2=3V and the target current is 10mA giving R1=3/10*1000=300 ohms minimum.   

The same circuit works with 3.3V. The only change needed is in the value of the load resistor. Again assuming the 

LED drops 2 V and works at a current of 10 mA then R1=(3.3-2)/10*1000= 130 ohms.  

In general, if you want to drive a current load simply find the current you want to flow through it I and what 

voltage V is across it at that current - look it up in a data sheet. Then the load resistor that you need is 

R1=(Vs-V)/I ohms. 

were Vs is the supply voltage - 5V or 3.3V in the two cases above.  

Things are a tiny bit more complicated when the load is a voltage load. A voltage load simply wants to be 

connected to a varying voltage and doesn't pass very much current - it is a high impedance load. In this case you 

don't put the load in series with the load resistor, but connect it to the load resistor as 

shown:  

  

This is the servo circuit introduced in the chapter 7. The pulse input to the servo is a high impedance voltage input. 

In this case R1 simply acts to limit the voltage through the transistor. At 10K ohms the current through the 



transistor is at most 0.5 mA. As long as the connection to the servo or any voltage load only takes a small current 

compared to this 0.5 mA you can ignore the load and consider the voltage across R1 to vary from zero to 5V.  

Changing the supply voltage to 3.3V simply lowers the current though the transistor and R1. 

The problem with this circuit is that as far as the voltage is concerned it is inverting. If the Edison's output line is 

low then the transistor is cut off and the the pulse line is effectively connected to 5V via R1. When the line is high 

the the transistor is fully on and the voltage on the pulse line is zero as it is effectively connected to ground though 

the transistor. 

Hence: 

Edison line high = pulse line low  

and vice versa.  

Notice that this is a problem even if you replace the BJT with a MOSFET.  

In the previous chapter we solved this problem with software and inverted the way the line was driven. Sometime - 

because you are using third party software say this is not possible.  

The standard way of getting a non-inverting voltage converter is to use two transistors.  

 

This works well but there is an easy way to do the same job with a single transistor - although it does have some 

limitations.   

 



In this variation on a common base mode the transistor's base is connected to 1.8V and its collector to the 5V 

supply. If the Edison output is low then the base emitter voltage is 1.8V and the transistor is hard on, pulling the 

output to the servo low. If the Edison output is high the base emitter voltage is zero and the transistor is cut 

off, making the output to the servo high.  

You can see that this is non-inverting, but the problem is that the current that flows through R2 is also the emitter 

current, which is the current the Edison I/O line has to sink. What this means is that the current in R2 is limited to 

around 2mA and this circuit provides no amplification. Of course you could add another transistor to provide 

current amplification but in this case you would be better off going back to the standard 2-transistor arrangement.  

This circuit does, however, work with most servos so in this role it is useful.  

If you are going to try it out with the servo program from the chapter on PWM remember to change the timings to 

drive it in a non-inverted way.  

Both circuits also work at 3.3V. 

5V and 3.3V to 1.8V input 

Going from high to low logic for input is very easy. All you need are two resistors to form a potential divider. V is 

the input from the external logic and Vout it the connection to the Edison's input line: 

 

  

You can spend a lot of time on working out good values of R1 and R2. For loads that take a lot of current you need 

R1+R2 to be small and divided in the same ratio as the voltages. For most uses a total of 5K or even 10K is good 

enough and if V is 5V then R1=3.3K and R2=1.8K works well and for V= 3.3V R1=2.2K and R2=2.7K work 

well.  

The problem with a resistive divider is that it can round off fast pulses due to the small capacitive effects. This 

usually isn't a problem, but if it is then the solution is to use a transistor buffer again.  

http://www.i-programmer.info/programming/hardware/8777-exploring-edison-pwm.html


 

 The role of R2 is simply to limit the input current taken from the output of the 5V or 3.3V device. The current is 

V-0.6/R2 where V is 5 or 3.3. 

Notice that this is an inverting buffer but you can usually ignore this and simply correct in software i.e. read a 1 as 

a low and a 0 as a high state.  

In most case you should try the simple voltage divider and only move to an active buffer if it doesn't work.  

Bi-directional Bus 

The biggest problem in converting from 1.8V to 3.3 or 5V is when you need to work with a bi-directional bus.  

There are, roughly speaking, three types of bi-directional bus - wire or, wire and and tristate. 

The most commonly encountered is a wire or or open collector bus. This is used for I2C and many other one wire 

serial buses. The key idea is that the bus line is connected to a voltage reference via a resistor, generally a pull up 

resistor. This allows any device connected to the bus to ground it and so pull the bus line down. If more than one 

device pulls the bus down then no harm is done. However the bus line only pulls up when all of the connected 

devices  

  



In the diagram above each of the switches represents a device connected to the bus. In practice the switches would 

be an active device such as a BJT or an FET but the principle is the same. You can see that closing any one of the 

switches grounds the pull up resistor which places the bus in low state.  

If you need to connect a 3.3V or 5V open collector bus to a 1.8V Edison input then you can make use of an chip 

designed to do the job but in many cases a simple classic single transistor level shifter can do the job. For 

conversion to 3.3V you will often see an FET used but for the low voltage involved in a 1.8V conversion a BJT 

does the job very well.  

This assumes that the output line is in pull up or open collector mode. The default for the mini-breakout board is 

pull up using a 50K resistor. The circuits described work in this mode.  

For example: 

  

 

  

To understand how this works we have to consider what happens when each side of the bus is pulled low.  

If the 1.8V logic input is pulled low then the emitter of the transistor is grounded and as the base is at 1.8V the 

transistor switches on and saturates so pulling the 3.3 logic bus down.  

The more difficult situation is when the 3.3V logic linput is pulled low. In this case the collector is grounded and 

the base being at 1.8V [its tje tranistor into reverse active mode i.e. with collector and emittor swapping roles. In 

this mode the transistor is still a current amplifier but with a much reduced gain (hfe). Given sufficent drive current 

however the transistor will still saturate and hence pull the 1.8V logic side of the bus low.  

The reason for the capacitor is that as the transistor changes operational mode there is a charge storage effect 

which causes the voltage to suddenly drop.  An effect you can see clearly: 

  



 

The blue trace is the 3.3V input signal and the green trace is the 1.8V output. In practice the undershoot can cause 

the Edison to detect two pulses in place of one.  

With a small capacitance in place the effect is reduced: 

 

  

Notice that as in the case of the single transistor non-inverting buffer the big problem is that there is no current 

amplification. When the Edision pulls the bus low it has to sink the current through R1, R2 and R3. and the same 

is true on the 3.3V side. In this case the total current is less than 1.5mA. 

The circuit works just as well at 5V with a slighly higher current. 

You might expect the Edison's side of the bus needs to be driven with an open collector i.e. with its own pull up 

which is the default mode.  

In fact it doesn't make any difference as the Edison is the only device driving the 1.8V logic input. You can use an 

active high/active low drive as long as the Edison is the only device driving the bus and then the line is changed to 

an input to read the response from the responding device. If the output line drives the bus both high and low then a 

problem only arrises when the slave attempts to drive the bus in the opposite direction. In most cases the slave 

doesn't attempt to drive the bus at the same time as the master and so the type of drive is irrelevant as long as the 

line reverts to input as soon as a slave starts transmitting data. However it takes time to convert an output line to an 

input and this is sometimes an additional problem.   

Converting other types of bus are more difficult but follow the same general idea.  



You can build the circuit using a prototyping board or you can built it in-situ on the device you need to 

convert.  Something like:  

where the device in question is connected to the three wires at the top of the diagram. This is used in the next two 

chapters to interface bidirectional pull up buses.  

Exploring Edison - Bit Banging the DHT11/DHT22 
In this chapter we make use of all of the ideas introduced in earlier chapters to create a raw interface with the low cost 

DHT11/22 temperature and humidity sensor. It is an exercise in interfacing two logic families and implementing a protocol 

directly in C.  

The Device 

The DHT22 is a more accurate version of the DHT11 and it is used in this project but the hardware and software 

will work with both version and with the AM2302 which is similar to the DHT22.  

Model AM2302/DHT22 

Power supply 3.3-5.5V DC 

Output signal digital signal via 1-wire bus  

Sensing element Polymer humidity capacitor  

Operating range  

  humidity 0-100%RH;  

  temperature -40~80Celsius 

Accuracy  

 humidity +-2%RH(Max +-5%RH);  

 temperature +-0.5Celsius 

Resolution or sensitivity  

 humidity 0.1%RH; 

 temperature 0.1Celsius 

Repeatability  

 humidity +-1%RH;  

 temperature +-0.2Celsius 



 

  

So the device will work at 3.3V and it makes use of a 1-wire open collector style bus which will need to be 

converted to a 1.8V bus to work with the Edison. Unfortunately the one wire bus isn't standard and is only used by 

this family of devices so we have little choice but to implement the protocol in C.  

  

 The pin outs are: 

1. VDD 

2. SDA serial data 

3. not used 

4. GND 

and the standard way of connecting the device is: 

 

The serial protocol is also fairly simple: 

 The host pulls the line low for between 0.8 and 29 ms, 

usually 1ms 

 It then releases the bus which is pulled high  

 After between 20 and 200 microseconds, usually 30 microseconds, the device starts to send data by pulling 

the line down for around 80 microseconds and then lets float high for another 80 microseconds.  



 Next 80 bits of data are sent using a 70 microsecond high for a 1 and a 26 microsecond high for a zero the 

high pluses are separated by arond 50 micorosecond low period.  

 

  

  

So what we have to do is pull the line low for 1ms or so to start the device sending data and this is very easy. Then 

we have to wait for the device to pull the line down and let it pull up again - about 160 microsecond and then read 

the time that the line is high 80 times. 

A one corresponds to 70 microseconds and a zero corresponds to 26 microseconds. This is within the range of 

pulse measurement that can be achieved using fast memory mapped I/O. There is also a 50 microsecond period 

between each data bit an this can be used to do some limited processing. Notice that we are only interested in the 

time that the line is held high 

The Electronics 

To convert the 3.3V device to work with the 1.8V Edison we can make use of the single transistor level shifter 

introduced in the previous chapter: 

  

The pins used on the Edison connector are: 

MRAA Number Physical Pin 
Edison Pin 

(SYSFS) 

29 J19-2 V_V1P80 

30 J19-3 GND 

31 J19-4 GP44 

43 J20-2 V_V3P30 

  



It is worth recalling that for the mini-board you can't alter the output mode of a line using mraa. By default the 

output mode is pull up with a 50K resistor which is effectively in parallel with our 10K pull up. This means the 

actually pull up in use is effectively around 8K.  

If you use a 2N2222 transistor then the pin outs are: 

  

 

You can build the circuit on a prototype board to test the software but it is also fairly easy to build a free standing 

circuit on the DHT22 effectively converting it to 1.8V operation: 

 

Isolate the components from one another using heat shrink sleeving. Of course the disadvantage is that now we 

have a four lead device and the cable cannot be as long - if it is long remove the capacitor as the lead will provide 

more capacitive loading than you need. 

The Software 

With the hardware shown above connected to the Edison the first thing that we need to do is establish that the 

system is working - just a little. 

The simplest way to do this is to pull the line down for 1ms and see if the device responds with a stream of pulses. 

These can be seen on a logic analyser or an oscilloscope - both are indispensable tools.  

If you don't have access to either tool then you will just have to skip to the next stage and see if you can read in 

some data.  

The simplest program that will do the job is:  



int main() 

{ 

 mraa_gpio_context pin = mraa_gpio_init(31); 

 mraa_gpio_use_mmaped(pin,1); 

 mraa_gpio_dir(pin, MRAA_GPIO_OUT_HIGH);   mraa_gpio_write(pin, 0); 

 usleep(1000); 

 mraa_gpio_dir(pin, MRAA_GPIO_IN); 

 return MRAA_SUCCESS; 

} 

Setting the line initially high we then set it low, wait for 1000 microseconds and then change its direction to input 

ready to read the data.  

Notice that we don't have to set the mode of the output line as it can drive its side of the buss safe in the knowledge 

that the device will not try to drive it until it releases the low state and changes to a high impedance input. 

As long as the circuit has been correctly assembled and you have a working device you should see something like: 

  

  

Notice that the pulling low of the line actually lasts 1,3ms which is a bit on the long side but does no harm. 

If you haven't used the capacitor in the level shifting circuit then you might see on some of the pulses on the 

Edison's side look something like: 

 

  

This is caused by the change in operating mode of the transistor. The capacitor acts as a high pass filter and 

smooths the glitch out. You might not see this effect even without the capacitor because often the circuit layout 

provides enough stray capacitance to smooth things out. Too much capacitance and the rise time of the pluses is 

compromised.  

  

 

Reading The Data 

With preliminary flight checks complete it is time to read the 40-bit data stream. When doing this there are two 

things to keep in mind. The first is that it is only the time the line is high that matters and you need to measure just 

this accurately - you don't care so much about how long the line is low for. 



The second is that it is usually better to collect the bits and only later process them and extract the data. To this end 

it is usually a good idea to save the data in a buffer:  

 int buf[40]; 

 int i; 

 int j; 

 for(j=0;j<=40;j++){ 

  for(i=1;i<200;i++){ 

   if(mraa_gpio_read(pin)==1)break; 

  }; 

  for(i=1;i<200;i++){ 

   if(mraa_gpio_read(pin)==0)break; 

  } 

  buf[j]=i;   

} 

  

You should be able to see how this works. 

The outer for loop repeats to read in all 41 bits, 40 data bits and the inital start bit. The inner loop waits for the line 

to go high and i gives the time that the line has been low. This is of no interest. Next the second for loop waits for 

the line to go low. The count in i is now proportional to the time the line was high and is stored in the buffer.  

If you add  

for(j=0;j<=40;j++){ 

 printf("%d %d \n",j,buf[j]); 

} 

to the end of the program you will be able to see the counts and you should quickly be able to work out the value 

half way between the long one pulses and the short zero pulses. This was approximately 75 for the device in 

question. If there is any doubt that the pulse lengths might change or that the Edison might change then you could 

add some code that works out the threshold value each time it runs. This doesn't seem to be necessary in practice.  

With a threshold of 75 we can classify the pulses into long and short and store one and zero in the buffer.  

 int buf[40]; 

 int i; 

 int j; 

 for(j=0;j<=40;j++){ 

  for(i=1;i<200;i++){ 

   if(mraa_gpio_read(pin)==1)break; 

  }; 

  for(i=1;i<200;i++){ 

   if(mraa_gpio_read(pin)==0)break; 

  } 

  buf[j]=0; 

  if(i>75)buf[j]=1; 

 } 

You can afford to include this extra processing in the data collection loop because it happens while the line is low 

and we aren't interested in measuring this time accurately.  

Now we have the data in the buffer as zeros and ones. All that remains is to decode it into temperature and 

humidity readings. But first we will convert the bits into five bytes of data. The simplest way of doing this is to 

write a function that will pack eight bits into an int: 

uint getByte(int b,int buf[]){ 

 int i; 



 uint result=0; 

 b=(b-1)*8+1; 

 for(i=b;i<=b+7;i++){ 

  result= result<<1; 

  result=result | buf[i]; 

 } 

 return result; 

} 

The b can be set to the byte that you want to extract from the array. For example, if b=2 then the for loop runs 

from i=9 to i=16 i.e. the second byte stored in the array. The bit manipulation in the for loop is a fairly standard 

shift left and or the least significant bit into the result.  

Using this function getting the five bytes is trivial: 

int byte1=getByte(1,buf); 

int byte2=getByte(2,buf); 

int byte3=getByte(3,buf); 

int byte4=getByte(4,buf); 

int byte5=getByte(5,buf); 

The first two bytes are the humidity measurement, the second two the temperature and the final byte is the 

checksum.  

The checksum is just the sum of the first four bytes reduced to eight bits and we can test it using: 

printf("Checksum %d %d \n",byte5, 

     (byte1+byte2+byte3+byte4) & 0xFF); 

If the two values are different there has been a transmission error.  

In this case the simplest thing to do is get another reading from the device. However notice that you shouldn't read 

the device more than once every 2 seconds.  

The humidity and temperature data are also easy to reconstruct as they are transmitted high byte first and times 10 

the actual value.  

The humidity data is easy: 

float humidity= (float) (byte1<<8 |byte2)/10.0; 

printf("Humidity= %f \n",humidity); 

The temperature data is slightly more difficult in that the top most bit is used to indicate a negative temperature. 

This means we have to test for the most significant bit and flip the sign of the temperature if it is set: 

float temperature; 

int neg=byte3 & 0x80; 

byte3=byte3 & 0x7F; 

temperature= (float) (byte3<<8 |byte4)/10.0; 

if(neg>0)temperature=-temperature; 

printf("Temperature= %f \n",temperature); 

This complete the data processing however it is worth setting the processes priority so that it isn't interrupted by 

the OS while taking a reading - see the chapter on near real time Linux.  

const struct sched_param priority={1}; 

sched_setscheduler(0,SCHED_FIFO,&priority); 



The Complete Listing 

That's all we need to do and the final program, complete with some minor tidying up can be seen below: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

 

uint getByte(int,int[]); 

 

int main() 

{ 

 const struct sched_param priority={1}; 

 sched_setscheduler(0,SCHED_FIFO,&priority); 

 

 mraa_gpio_context pin = mraa_gpio_init(31); 

 mraa_gpio_use_mmaped(pin,1); 

 mraa_gpio_dir(pin, MRAA_GPIO_OUT_HIGH); 

  

 mraa_gpio_write(pin, 0); 

 usleep(1000); 

 mraa_gpio_dir(pin, MRAA_GPIO_IN);int buf[40]; 

 

 int i, j; 

 for(j=0;j<=40;j++){ 

  for(i=1;i<200;i++){ 

   if(mraa_gpio_read(pin)==1)break; 

  }; 

  for(i=1;i<200;i++){ 

   if(mraa_gpio_read(pin)==0)break; 

  } 

  buf[j]=0; 

  if(i>75)buf[j]=1; 

 } 

 

 for(j=0;j<=40;j++){ 

  printf("%d %d \n",j,buf[j]); 

 } 

 

 int byte1=getByte(1,buf); 

 int byte2=getByte(2,buf); 

 int byte3=getByte(3,buf); 

 int byte4=getByte(4,buf); 

 int byte5=getByte(5,buf); 

 

 printf("Checksum %d %d \n",byte5, 

     (byte1+byte2+byte3+byte4) & 0xFF); 

  

 float humidity= (float) (byte1<<8 |byte2)/10.0; 

 printf("Humidity= %f \n",humidity); 

  

 float temperature; 

 int neg=byte3&0x80; 

 byte3=byte3&0x7F; 

 temperature= (float) (byte3<<8 |byte4)/10.0; 

 if(neg>0)temperature=-temperature; 

 printf("Temperature= %f \n",temperature); 

 

 return MRAA_SUCCESS; 

} 

 

uint getByte(int b,int buf[]){ 

 int i; 

 uint result=0; 



 b=(b-1)*8+1; 

 for(i=b;i<=b+7;i++){ 

  result<<=1; 

  result |= buf[i]; 

 } 

 return result; 

} 

 Where Next 

The DHT11/22 is a useful device but when it comes to low cost temperature measurement the DS18D20 is a very 

popular choice. You will often read that this is impossible to use with the Edison - in fact it's quite easy. Find out 

how in the next chapter 

Exploring Edison - The DS18B20 1-Wire Temperature Sensor 

The Edison doesn't have built in support for the Maxim 1-Wire bus and this means you can't use the very popular DS18B20 
temperature sensor. However with a little careful planning you can and you can do it from user rather than kernel space 

The Maxim 1-Wire bus is a proprietary bus that is very easy to use and has a lot of useful devices you can connect 

to it including their iButton security devices.  However probably the most popular of all 1-wire devices is the 

DS18B20 temperature sensor - it is small, very cheap and very easy to use.  

Easy to use - but only if the processor supports the 1-wire bus protocol and the Edison doesn't. However the 

protocol is easy enough to program in C and the Edison is fast enough to work with it without needing anything 

extra other than memory mapped I/O.  

The Hardware 

The DS18B20 is available in an number of formats but the most common makes it look just like a standard BJT - 

which can sometimes be a problem when you are trying to find one. 

 

You can also get them made up into waterproof sensors complete with cable.  



 

No matter how packaged they will work at 3.3V or 5V but not at 1.8V without a level converter.  Its basic 

specification is: 

 Measures Temperatures from -55°C to +125°C (-67°F to +257°F)  

 ±0.5°C Accuracy from -10°C to +85°C  

 Thermometer Resolution is User Selectable from 9 to 12 Bits  
 Converts Temperature to 12-Bit Digital Word in 750ms (Max) 

It can also be powered from the data line making the bus physically need only two wires - data and ground - 

however this "parasitic power" mode is difficult to make work reliably and best avoided in an initial design.  

In normal powered mode there are just three connections: 

 

  

Ground needs to be connected to the system ground, VDD to 3.3V and DQ to the pullup resistor of an open 

collector bus.  

  

 

  



There can be multiple devices on the bus and each one has a unique 64bit lasered ROM code which can be used as 

an address to select the active devices. For simplicity it is better to start off with a single device and avoid the 

problem of enumerating the devices on the bus - although once you know how everything works this isn't difficult 

to implement.  

As we only have a single bus master, the Edison and a single slave device, the DS18B20, we can use the same 

single transistor level shift introduced in earlier chapters. However there is an additional problem we have to solve 

- fast switching between input and output.  

In the previous chapter we were able to implement the serial protocol because essentially the Edison sent the 

device a pulse and then the device did all the talking. This allowed the use of a single GPIO line. It first was set to 

output, used to send a pulse then switched to input mode ready to read the 40 bits of data.  

The problem is that changing between output and input mode is done using the SYSFS drivers and it is 

comparatively slow - 15 to 20 microseconds. Fortunately in the example of the DHT22 because it simply resulting 

in missing part of the acknowledge pulse. The Edison was ready to read data well before the device started to send 

it.  

In the case of the 1-wire bus things are very different. The master has to send a fast pulse on the line for every bit 

received and it has to be able to read the response in 15 microseconds. This is too fast to allow for time to change 

the line from output to input in time to read the data. However given the specification of the 1-wire bus it might be 

possible most of the time and with some devices.  

A more secure solution that should work with all 1-wire bus devices is to use two GPIO lines - one set to output 

and one set to input.  

This works because it eliminates the need to change the line's direction but it does mean that you need to use two 

GPIO lines to drive the 1-wire bus. As long as you can afford this doubling up of GPIO lines then the solution 

works well.  

The schematic of the level shifter and the DS18B20 is: 

 

You will notice that it is the same circuit used in the previous chapter with the DS18B20 replacing the DHT22 and 

a second GPIO line connected.  

When you are first trying things out it is worth using a prototype board but this level shifter can be assembled in 

place on the DS18B20 to effectively convert the sensor to 1.8V operation: 

  



 

Again use heat shrink sleeving to avoid shorts between component wires. The disadvantage is that now we need 

four wires back to the Edison whereas only three are needed for a 3.3V device.  

Initialization  

Every transaction with the a 1-wire device starts with an initialization handshake. First we have to get the GPIO 

lines set up correctly  

  

mraa_gpio_context pinIn; 

mraa_gpio_context pinOut; 

int main() 

{ 

 const struct sched_param priority={1}; 

 sched_setscheduler(0,SCHED_FIFO,&priority); 

 

 pinIn = mraa_gpio_init(32); 

 mraa_gpio_use_mmaped(pinIn,1); 

 mraa_gpio_dir(pinIn, MRAA_GPIO_IN); 

 

 pinOut = mraa_gpio_init(31); 

 mraa_gpio_use_mmaped(pinOut,1); 

 mraa_gpio_dir(pinOut, MRAA_GPIO_OUT_HIGH); 

  

This simply sets mraa line 32 to input and 31 to output. We also set a realtime priority to the entire program. This 

isn't really necessary as only the bit read/write functions are actually time critical as will be explained later.  

Also notice that the variable pinIn and pinOut have been made file level i.e. global so that they don't have to be 

passed to the functions that make use of them. In practice you can refactor this code to make them parameters if 

you want to create a more general 1-wire library.  

Now we have to send the initilaization pulse. This is simply a low pulse that lasts at least 480 microseconds, a 15 

to 60 microsecond pause follows and then any and all of the devices on the bus pull the lin low for 60 to 240 

microseconds.  



 

  

This is fairly easy to implemnent as a function: 

int init(){ 

 mraa_gpio_write(pinOut, 0); 

 usleep(500); 

 mraa_gpio_write(pinOut, 1); 

 usleep(60); 

 int b=mraa_gpio_read(pinIn); 

 usleep(500); 

 return b; 

} 

 

We pull the line low for 500 microseconds and then let it be pulled back up. After a 60  microsecond wait which is 

right at the start of the guaranteed period when the line should be low if there  is an active device on the bus we 

read the input line and then wait another 500 microseconds to complete the data slot. 

As this is such a slow and inaccurate transaction it makes sense to use usleep rather than a busy wait loop. It 

releases control back to the OS so that some other program can run but it usually creates a pause that is longer than 

the time specified. 

Hence if there is a device the function should return zero and if there are no devices it should return a one.  

if(init()==1){ 

 printf("No device \n"); 

 return MRAA_SUCCESS; 

} 

If you try this partial program and have a logic analyser you will see something like: 

  

 

  

The actual initialization pulse is 567 microseconds and after a pause of 30 microsecond the device pulls the bus 

low for 110 microseconds in response - these timings can vary but a little over 90 microseconds after the end of 

the initialization pulse should always be within the presence pulse.  

Seeing a presence pulse is the simplest and quickest way to be sure that your hardware is working.  



Writing Bits 

Our next task is to implement the sending of some data bits to the device.  

The 1-wire bus has a very simple data protocol.  

All bits are sent using a minimum of 60 microseconds for a read/write slot. Each slot must be separated from the 

next by a minimum of 1 microsecond.  

The good news is that timing is only critical within each slot. You can send the first bit in a time slot and then take 

your time before you send the next bit - the device will wait for you. This means you only have to worry about 

timing withing the functions that read and write individual bits.  

To send a zero you have to hold the line low for most of the slot.  

To send a one you have to hold the line low for just between 1 and 15 microseconds and leave the line high for the 

rest of the slot. 

The exact timings can be seen below; 

 

It seems reasonable to use the typical timings shown on the diagram. So for a zero we hold the line low for 60 

microsecond then let it go high for the remainder of the slot. To send a one we hold the line for a bit more than 1 

microsecond and then let it go high for the remainder of the slot.  

So our sendZero function is: 

void sendZero(){ 

 int i; 

 mraa_gpio_write(pinOut, 0); 

 for(i=1;i<4000;i++){}; 

 mraa_gpio_write(pinOut, 1); 

 for(i=1;i<60;i++){}; 

} 

and our sendOne function is: 

void sendOne(){ 

 int i; 

 mraa_gpio_write(pinOut, 0); 

 for(i=1;i<60;i++){}; 

 mraa_gpio_write(pinOut, 1); 

 for(i=1;i<4000;i++){}; 

} 

Notice that the functions keep control after letting the line go high again. In principle they could return and let the 

main program do some processing but this would mean that the main program had to hold off sending another bit 

until the 60 microseconds was up. This approach isn't efficient but it is simple. Also notice that as the time periods 

are short and they have to be fairly repeatable a busy wait is the best option for the delay.  



With these constants the measured pulse widths are for a zero the the line is held low for just over 60 

microseconds with a pause of about 1.5 microseconds and for a one the line is held low for  1.5 microseconds and 

the slot is about 60 microseconds in total.  

As the only time critical operations are the actual setting of the line low and then back to high there is no need to 

worry too much about speed of operation of the entire function so we might as well combine the two functions into 

a single writeBit function: 

void writeBit(int b){ 

 int i; 

 int delay1,delay2; 

 if(b==1){ 

  delay1=60; 

  delay2=4000; 

 }else{ 

  delay1=4000; 

  delay2=60; 

 } 

 mraa_gpio_write(pinOut, 0); 

 for(i=1;i<delay1;i++){}; 

 mraa_gpio_write(pinOut, 1); 

 for(i=1;i<delay2;i++){}; 

} 

The code at the start of the function simply increases the time between slots slightly.  

You can see a one followed by a zero in the following logic analyzer trace: 

 

  

A First Command 

After discovering that there is at least one device connected to the bus the master has to issue a ROM command. In 

many cases the ROM command used first will be the Search ROM command which enumerates the 64-bit codes of 

all of the devices on the bus. After collecting all of these codes the master can used the Match ROM commands 

with a specific 64-bit code to select the device the master wants to talk to.  

While it is perfectly possible to implement the Search ROM procedure it is simpler to work with the single device 

by using commands which ignore the 64-bit code and address all of the devices on the bus at the same time. Of 

course this only works as long as there is only one device on the bus.  

If there is only one device then we can use the Skip ROM command 0xCC to tell all the devices on the bus to be 

active.  

As we have a writeBit function this is easy:  

void sendskip(){ 

 writeBit(0); 

 writeBit(0); 

 writeBit(1); 

 writeBit(1); 

 

 writeBit(0); 

 writeBit(0); 



 writeBit(1); 

 writeBit(1); 

} 

Notice that 0xCC is 1100 1100 in binary and the 1-wire bus sends the least significant bit first. 

If you try this out you should find it works but device doesn't respond because it is waiting for another command. 

Again as the time between writing bits isn't critical we can take this first implementation of the function and write 

something more general if slightly slower.  The writeByte function will write the low 8 bits of an int to the device:  

void writeByte(int byte){ 

int i; 

 for(i=0;i<8;i++){ 

  if(byte & 1){ 

   writeBit(1); 

  }else{ 

   writeBit(0); 

  } 

  byte=byte>>1; 

 } 

} 

Using this we can send a Skip ROM command using: 

writeByte(0xCC); 

You can see the pattern of bits sent by the Edison on a logic analyzer: 

 

Reading Bits 

We already know how the master sends a one and a zero the protocol for the device is exactly the same except that 

the master still provides the slots starting pulse.  

That is the master starts a 60 microsecond slot by pulling the bus down for a bit more than 1 microsecond. Then 

the device either holds the line down for a further 15 microseconds minimum or it simply allows the line to float 

high. See below for the exact timings: 

 

So all we have to do to read bits is to pull the line down for just a bit more than 1 microsecond and then sample the 

bus at the end of a 15 microsecond pause.  

int readBit(){ 

 int i; 



 mraa_gpio_write(pinOut, 0); 

 for(i=1;i<60;i++){}; 

 mraa_gpio_write(pinOut, 1); 

 

 for(i=1;i<800;i++){}; 

 int b= mraa_gpio_read(pinIn); 

 for(i=1;i<3500;i++){}; 

 return b; 

} 

The readBit function pulls the line low for about 1.5 microsecond and measures the line state at around 12.5 

microseconds. The total slot time is around 630 microseconds.  Again it is better to use busy waits as the time 

periods are short and need to be repeatable.  

A logic analyzer shows the typical pattern of bits from the device: 

  

 

The narrow initial low pulse corresponding to a one slot is 1.5 microseconds and the longer low pulses 

corresponding to a zero slot is 28 microseconds with the slot lasting 690 microseconds.  

After using the program for a lot of measurements it turns out the a loop time of 450 iterations reduces the error 

rate considerably. It seems earlier is better.  

Initiating A Temperature Conversion 

Our next task is to send a Convert command 0x44. 

This starts the DS18B20 making a temperature measurement. Depending on the resolution selected this can take as 

long as 750ms. How the device tells the master that the measurement has completed depends on the mode it is 

operating in but using an external power line, i.e. not using parasitic mode, the device sends a zero bit in response 

to a bit read until it is completed when it sends a 1.  

As we already have a readBit function this is easy. 

The software polls for the completion by reading the bus until it gets a 1 bit: 

int convert(){ 

 int i; 

 writeByte(0x44); 

 for(i=1;i<1000;i++){ 

  usleep(10000); 

  if(readBit()==1)break; 

 }; 

 return (i==1000); 

} 

You can of course test the return value to check that the result has been obtained. 

When the function returns the new temperature measurement is stored in the devices scratchpad memory and now 

all we have to do is read this.  



Reading The Scratchpad 

The scratchpad memory has nine bytes of storage in total and does things like control the accuracy of conversion 

and provide status information. However in our simple example the only two bytes of any great interest are the 

first two - which hold the result of a temperature conversion.  

Before we move on to read the scratchpad we need a function that will read a byte. As in the case of writing a byte 

there is no time criticality in the time between reading bits so we don't need to take extra special care in 

constructing the function; 

int readByte(){ 

 int byte=0; 

 int i; 

 for(i=0;i<8;i++){ 

  byte=byte | readBit()<< i; 

 }; 

 return byte; 

} 

The only difficult part is to remember that the 1-wire bus sends the least significant bit first and so this has to be 

shifted into the result from the right.  

Now we have a readByte function getting the data is simple. We have to issue a Read Scratchpad 0xBE command 

and then read the nine bytes that the device returns.  

However, to send the new command we have to issue a new initialization pulse and a Skip ROM 0xCC command 

followed by a read scratchpad command 0xBE:  

if(init()==1){ 

 printf("No device \n"); 

 return MRAA_SUCCESS; 

} 

writeByte(0xCC); 

writeByte(0xBE); 

Now the data is ready to read. We can read all nine bytes of it or just the first two. The device will keep track of 

where the read is so if you come back later and read more bytes you will get the first one not read. If you issue an 

initialization  pulse then the device aborts the data transmission.  

We only need the first two bytes which are the least and most significant bytes of the 11-bit temperature reading as 

a 16-bit, 2-complement integer.  

int b1= readByte(); 

printf("%d \n",b1); 

int b2= readByte(); 

printf("%d \n",b2); 

Getting the Temperature 

All we now have to do do is to put the two bytes together as a 16-bit integer. As the Edison supports a 16-bit int 

we can do this very easily: 

 int16_t temp1= (b2<<8 | b1) ; 

 float temp= (float)temp1/16 ; 

 printf("temperature = %f C \n",temp); 

 return MRAA_SUCCESS; 

} 



Notice that this only works because int16_t really is a 16-bit integer. If you were to use: 

int temp1= (b2<<8 | b1); 

Then temp1 would be correct for positive temperatures but it would give the wrong answer for negative values 

because the sign bit isn't propagated into the top 16 bits. If you want to use a 32-bit integer then you will have to 

propagate the sign bit manually: 

if(b2 & 0x80) temp1=temp1 | 0xFFFF0000; 

float temp= (float)temp1/16; 

Now we have a basic program to read the temperature and some useful 1-wire functions. The next task would be to 

refactor more of the code to create a function that reads the temperature on demand.  

Where Next? 

Once you have the basic bit read/write functions the rest follows fairly easily. Missing from the program given 

below is the ability to write to the configuration register to select the resolution, but in most cases 12-bit the 

default is what you want. Also missing is the CRC calculation to check for errors and most important of all the 

enumeration algorithm that discovers what 1-wire devices are active on the bus. The CRC is important because 

you will encounter an incorrect result about one in every 50 to 100 readings for one reason or another. 

All the omissions are fairly straightforward to provide now that we have the low-level data functions.  

One advantage of a user mode implementation is that you can easily implement some of the functions that the 

Kernel mode drivers often omit. You can also expand the operation to other 1-wire devices such as iButtons etc.  

If anyone is interested in these contact me at Harry.Fairhead@i-programmer.info and if demand is great enough I 

will implement them. 

Full Listing 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h>int init(); 

 

int readBit(); 

int readByte(); 

void writeBit(int); 

void writeByte(int); 

int convert(); 

 

mraa_gpio_context pinIn; 

mraa_gpio_context pinOut; 

 

int main() { 

 const struct sched_param priority = { 1 }; 

 sched_setscheduler(0, SCHED_FIFO, &priority); 

 

 pinIn = mraa_gpio_init(32); 

 mraa_gpio_use_mmaped(pinIn, 1); 

 mraa_gpio_dir(pinIn, MRAA_GPIO_IN);pinOut =  

 

 mraa_gpio_init(31); 

 mraa_gpio_use_mmaped(pinOut, 1); 

 mraa_gpio_dir(pinOut, MRAA_GPIO_OUT_HIGH); 

 

 if (init() == 1) { 

  printf("No device \n"); 
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  return MRAA_SUCCESS; 

 } 

 writeByte(0xCC); 

 convert(); 

  

 if (init() == 1) { 

  printf("No device \n"); 

  return MRAA_SUCCESS; 

 } 

 writeByte(0xCC); 

 writeByte(0xBE); 

 

 int b1 = readByte(); 

 printf("%d \n", b1); 

 int b2 = readByte(); 

 

 printf("%d \n", b2); 

 int16_t temp1 = (b2 << 8 | b1); 

 float temp = (float) temp1 / 16; 

 printf("temperature = %f C \n", temp); 

 return MRAA_SUCCESS; 

} 

 

void writeBit(int b) { 

 int i; 

 int delay1, delay2; 

 if (b == 1) { 

  delay1 = 60; 

  delay2 = 4000; 

 } else { 

  delay1 = 4000; 

  delay2 = 60; 

 } 

 mraa_gpio_write(pinOut, 0); 

 for (i = 1; i < delay1; i++) { 

 }; 

 mraa_gpio_write(pinOut, 1); 

 for (i = 1; i < delay2; i++) { 

 }; 

 } 

  

int readBit() { 

 int i; 

 mraa_gpio_write(pinOut, 0); 

 for (i = 1; i < 60; i++) { 

 }; 

 mraa_gpio_write(pinOut, 1); 

 for (i = 1; i < 450; i++) { 

 }; 

 int b = mraa_gpio_read(pinIn); 

 for (i = 1; i < 3500; i++) { 

 }; 

 return b; 

} 

 

void writeByte(int byte) { 

 int i; 

 for (i = 0; i < 8; i++) { 

  if (byte & 1) { 

   writeBit(1); 

  } else { 

   writeBit(0);  



  } 

  byte = byte >> 1; 

 } 

} 

 

int readByte() { 

 int byte = 0; 

 int i; 

 for (i = 0; i < 8; i++) { 

  byte = byte | readBit() << i; 

 }; 

 return byte; 

} 

 

int convert() { 

 int i; 

 writeByte(0x44); 

 for (i = 1; i < 1000; i++) { 

  usleep(10000); 

  if (readBit() == 1) 

   break; 

  }; 

 return (i == 1000); 

} 

 

int init() { 

 mraa_gpio_write(pinOut, 0); 

 usleep(500); 

 mraa_gpio_write(pinOut, 1); 

 usleep(60); 

 int b = mraa_gpio_read(pinIn); 

 usleep(500); 

 return b; 

} 

Exploring Edison – SPI 

The SPI bus can be something of a problem because it doesn't have a well defined standard that every device conforms to. 
Even so, if you only want to work with one specific device it is usually easy to find a configuration that works - as long as 
you understand what the possibilities are.  

SPI Bus Basics 

The SPI bus is commonly encountered as it is used to connect all sorts of devices from LCD displays, through real 

time clocks, to AtoD converters. It is also used for high data rate streaming, for example, getting video data from a 

camera.  

The SPI bus is strange because there is no standards for it and different companies have implemented it in different 

ways which means that you have to work harder to implement it in any particular case. However, it does usually 

work, which is a surprise for a bus with no standard or clear specification. 

The reason it can be made to work is that you can specify a range of different operating modes, frequencies and 

polarities. This makes the bus slightly more complicated to use, but generally it is a matter of looking up how the 

device you are trying to work with implements the SPI bus and then getting the Edison to work in the same way.  

The bus is odd in another way - it does not use bidirectional serial connections. There is a data line for the data to 

go from the master to the slave and a separate data line from the slave back to the master. That is, instead of a 

single data line that changes its transfer direction, there is one for data out and one for data in.  



There is a variation on the SPI bus that does use a bidirectional mode where a single wire is used for the data, but 

the Edison doesn't support this. 

It is also worth knowing that the drive on the SPI bus is push-pull and not open collector/drain. This provides 

higher speed and more noise protection as the bus is driven in both directions.  

  

You can see the sort of configuration that the Edison expects. There is a single master and at most two slaves. The 

signal lines are:  

 MOSI Master Output Slave Input i.e. data to the slave 
 MISO Master Input Slave Output i.e. data to the master 
 SCLK Serial Clock which is always generated by the master 

There can also be any number of SS - Slave Select - or CE Chip Select - lines which are usually set low to select 

which slave is being addressed. 

Notice that unlike other buses I2C for example there are no SPI commands or addresses - only bytes of data. 

However slave devices do interpret some of the data as commands to do something or send some particular data.  

The Edison has only a single SPI bus exposed on the mini breakout board and only two SS lines. This means that 

in principle you can only connect two SPI devices. In practice mraa only uses CS1 and so you can only connect a 

single slave device.  This can be overcome by using GPIO lines as chip select lines and/or using CS0 directly.  

  

The pins that are used for the Edison's SPI bus are:  

MRAA Number Physical Pin 
Edison Pin 

(SYSFS) 
Pinmode0 Pinmode1 

9 J17-10 GP111 GPIO-111 SPI-5-CS1 

10 J17-11 GP109 GPIO-109 SPI-5-SCK 

11 J17-12 GP115 GPIO-115 SPI-5-MOSI 

23 J18-10 GP110 GPIO-110 SPI-5-CS0 

24 J18-11 GP114 GPIO-114 SPI-5-MISO 



29 J19-2 V_V1P80 
  

30 J19-3 GND 
  

43 J20-2 V_V3P30 
  

  

  

   

The data transfer on the SPI bus is also slightly odd. 

What happens is that the master pulls one of the chip selects low which activates a slave. Then the master toggles 

the clock SCLK and both the master and the slave send a single bit on their respective data lines. After eight clock 

pulses a byte has been transferred from the master to the slave and from the slave to the master. 

You can think of this as being implemented as a circular buffer - although it doesn't have to be.  

  

 

  

This full duplex data transfer is often hidden by the software and the protocol used. For example there is a read 

function that reads data from the slave and sends zeros or data that is ignored by the slave. Similarly there is a 

write function that sends valid data but ignores whatever the slave sends. The transfer is typically in groups of 

eight bits and usually most significant bit first but this isn't always the case. In general as long as the master supply 

clock pulses data is transferred.  



Notice this circular buffer arrangement allows for slaves to be daisy chained with the output of one going to the 

input of the next. This makes the entire chain one big circular shift register. This can make it possible to have 

multiple devices with only a single chip select but it also means any commands sent to the slaves are received by 

each one in turn. For example you could send a convert command to each AtoD converter in turn and receive back 

results from each one. (See:https://www.maximintegrated.com/en/app-notes/index.mvp/id/3947) 

The final odd thing about the SPI bus is that there are four modes which define the relationship between the data 

timing and the clock pulse. The clock can be either active high or low - clock polarity CPOL and data can be 

sampled on the rising or falling edge of the clock - clock phase CPHA. All combinations of these two possibilities 

gives the four modes: 

SPI Mode 
Clock Polarity 

CPOL 

Clock Edge 

CPHA 
  

0 0 0 Clock active high data output on falling edge and sampled on rising 

1 0 1 Clock active high data output on rising edge and sampled on falling 

2 1 0 Clock active low data output on falling edge and sampled on rising 

 

3 1 1 Clock active low data output on rising edge and sampled on falling 

The way that the modes are named is common but not universal.  

There is often a problem trying to work out what mode a slave device uses. The clock polarity is usually easy and 

the Clock phase can sometimes be worked out from the data transfer timing diagrams and:  

 First clock transition in the middle of a data bit means CPHA=0 
 First clock transition at the start of a data bit means CPHA=1 

So, to configure the SPI bus to work with a particular slave device you have to  

1. Select the clock frequency - anything from 125MHz to 3.8KHz  
2. Set the CS polarity - active high or low 
3. Set the clock mode Mode0 thru Mode3 

Now we have to find out how to do this using the mraa library. 

The SPI Functions 

There are thee functions concerned with enabling and disabling the SPI bus: 

mraa_spi_init (int bus) 

mraa_spi_stop (mraa_spi_context dev) 

mraa_spi_init_raw ( 

        unsigned int bus, unsigned int cs)  

Initialization 

Before you make use of the SPI bus you have to initialize it using: 

https://www.maximintegrated.com/en/app-notes/index.mvp/id/3947


mraa_spi_context dev SPI=mraa_spi_init (0) 

This returns the SPI context  if successful and NULL otherwise. After this the pins allocated to the SPI bus no 

longer work as general purpose GPIO pins. 

When you are finished using the SPI bus you can return the pins to general GPIO lines by calling: 

mraa_spi_stop (SPI) 

You can also use mraa to initialize a bus without any board configuration using mraa_spi_init_raw, but this isn't 

something you generally want to do as the basic init doesn't do any initialization if it recognizes that it is working 

with the mini-expansion board. 

Configuration 

There are a number of functions that you can use to configure the way the bus works.  

mraa_spi_frequency (mraa_spi_context dev, int hz) 

mraa_spi_mode (mraa_spi_context dev,  

                         mraa_spi_mode_t mode) 

mraa_spi_lsbmode (mraa_spi_context dev,  

                         mraa_boolean_t lsb) 

mraa_spi_bit_per_word (mraa_spi_context dev,  

                         unsigned int bits) 

The frequency sets the speed of data transfer in Hz 

For example: 

mraa_spi_frequency (dev, 50000)  

sets the bus frequency to 50kHz. 

The theoretical maximum speed is 25MHz but in the current implementation the SPI bus doesn't always work at 

the speed you set.  

mraa_spi_mode  can be used to set the data transfer to one of: 

MRAA_SPI_MODE0  

CPOL = 0, CPHA = 0, Clock idle low, 

data is clocked in on rising edge, 

output data (change) on falling edge 

MRAA_SPI_MODE1  

CPOL = 0, CPHA = 1, Clock idle low, 

data is clocked in on falling edge, 

output data (change) on rising edge 

MRAA_SPI_MODE2  

CPOL = 1, CPHA = 0, Clock idle low, 

data is clocked in on falling edge, 

output data (change) on rising edge 

MRAA_SPI_MODE3  

CPOL = 1, CPHA = 1, Clock idle low, 

data is clocked in on rising, edge 

output data (change) on falling edge 

  

You can also set the bit order and number of bits in each data transfer: 



mraa_spi_lsbmode (dev,TRUE) 

mraa_spi_bit_per_word(dev,8) 

This sets the bit order to least significant bit first and 8-bit transfers. The lsbmode function seems to have no effect 

in the current version of mraa.  

Notice that bit_per_word only affects data transferred in word units if it is in the range 16 or less and byte transfers 

if it is 8 or less. 

That is: 

 If you try to send a byte and specify 10 bits - nothing happens. 

 If you try to send a word and specify 10 bits -  only 10 bits are sent. 

 If you specify 5 bits and send a byte - only the low order 5 bits are sent. 

You can't specify more than 16 bits for the transmission of a word.  

Although some of the examples in the documentation use the SPI without configuring it, i.e. accepting the 

defaults, this isn't a good idea. If you do accept the defaults you can find the the bus behaves erratically and 

incorrectly - e.g. no clock pulse. 

Always set the bus to reasonable values such as: 

mraa_spi_mode (spi, MRAA_SPI_MODE0 ); 

mraa_spi_frequency(spi, 400000); 

mraa_spi_lsbmode(spi, 0); 

mraa_spi_bit_per_word(spi,8);  

Data transfer functions 

Because of the way the SPI bus uses a full duplex transfer things are a little different from other buses when it 

comes to implementing functions to transfer data.   

mraa_spi_write (mraa_spi_context dev,uint8_t data) 

mraa_spi_write_word ( 

               mraa_spi_context dev,uint16_t data)  

mraa_spi_write_buf (mraa_spi_context dev, 

                        uint8_t *data, int length) 

mraa_spi_write_buf_word (mraa_spi_context dev,  

                       uint16_t *data, int length)  

mraa_spi_transfer_buf (mraa_spi_context dev,  

        uint8_t *data, uint8_t *rxbuf, int length) 

mraa_spi_transfer_buf_word (mraa_spi_context dev,               uint16_t *data, uint16_t 

*rxbuf, int length) 

If you recall that the data transfer sends a byte of data out of the register while shifting in a byte of data then the 

transfer functions will make sense.  

The most basic of this set of functions is write which sends a single byte to the slave while receiving a single byte 

sent back. Unlike the underlying protocol it doesn't overwrite the original value with the slave's data. 



So, to send and receive data, you would use something like: 

uint8_t Send_data=0x55; 

int Read_data; 

Read_data = mraa_spi_write(dev,Send_data); 

Of course, you can always simply throw away the data from the slave if you just want a "write" or send 

meaningless data to the slave if you just want a "read". 

You can specify how many bits are sent using  bit_per_word. 

For example: 

mraa_spi_bit_per_word(spi,5); 

uint8_t Send_data=0x55; 

int Read_data; 

Read_data = mraa_spi_write(dev,Send_data); 

will only send the low-order 5 bits. 

The write_word function works in the same way as write but it sends a word containing up to 16 bits without 

deactivating the CS line. You can use bit_per_word to specify exactly how many bits are sent. 

For example: 

mraa_spi_bit_per_word(spi,14); 

uint16_t trans=0xF000; 

uint16_t recv = mraa_spi_write_word(spi,trans ); 

will transfers the low order 14 bits in trans to recv. In this case this means that recv will contain 0x3000. Not many 

SPI devices work with anything other than 8 bits. 

The remaining functions all send multiple bytes of data stored in a buffer. They differ in how they return the data 

and each one comes in a byte or a word version. The byte versions always send eight bits at a time and the word 

versions send anything up to 16 bits.  

Let's look at each one in turn. 

The first two send a buffer of data and return a pointer to a buffer of data received. There is a byte version: 

mraa_spi_write_buf (dev,data, length) 

and a word version: 

mraa_spi_write_buf_word (dev, data, length)  

The difference is that in the byte version data is a byte array and in the word version it is a 16-bit array. Again the 

word version will send the number of bits from each word as set by bit_per_word. 

For example, 

uint8_t buf[]={0x01,0x02,0x03}; 

uint8_t *read =mraa_spi_write_buf (spi, buf, 3); 

sends three bytes and receives three bytes without deactivating the CS line. It is your responsibility to free up the 

buffer that the function returns.  



The final two functions work in exactly the same way but with the difference that the received data is stored in a 

buffer of your choice:  

mraa_spi_transfer_buf (dev, data[],rxbuf[], length) 

mraa_spi_transfer_buf_word (dev, data[],  

                                   rxbuf[], length) 

  

For example: 

uint8_t buf[]={0x01,0x02,0x03}; 

uint8_t recv[3]; 

mraa_spi_transfer_buf (spi, buf, recv,3); 

sends three bytes and receives three bytes, but now into an array that you have created in your program. Using just 

these functions you should be able to deal with most SPI slaves.  

Now we come to a subtle point. 

What is the difference between transferring multiple bytes using write_buf or transfer_buf and simply sending the 

bytes individually using multiple write calls?  

The answer is that each time you make a write call the chip select line is activated, the data is transferred and then 

it is deactivated. When you use buffer transfers the chip select is left active for the entire transfer, i.e. it isn't 

deactivated between each byte. 

Sometimes this difference isn't important and you can transfer three bytes using three calls to transfer or one call 

to tranfernb. However, some slaves will abort the current multibyte operation if the chip select line is deactivated 

in the middle of a multibyte transfer.  

It is important to realize that the nature of the transfer is that the first byte is sent at the same time that the first byte 

is received. That is, unlike other protocols, the whole of the send buffer isn't sent before the received data comes 

back. The whole transfer works a byte at a time - the first byte is sent while the first byte is being received, then 

the second byte is sent at the same time the second byte is being received and so on. Not fully understanding this 

idea can lead to some interesting bugs.  

A Loop Back Example 

Because of the way that data is transferred on the SPI bus it is very easy to test that everything is working without 

having to add any components. All you have to do is connect MOSI to MISO so that anything sent it also received 

in a loop back mode.  

First connect pin J17/12 to pin J18/11 using a jumper wire and start a new project.  

The program is very simple. 

First we initialize the  SPI bus: 

mraa_spi_context spi = mraa_spi_init(0); 

As this is a loop back test we really don't need to configure the bus, but for completeness: 



mraa_spi_mode (spi, MRAA_SPI_MODE0 ); 

mraa_spi_frequency(spi, 400000); 

mraa_spi_lsbmode(spi, 0); 

mraa_spi_bit_per_word(spi,8); 

Next we can send some data and receive it right back: 

uint16_t read_data = mraa_spi_write(spi,0xAA); 

The hex value AA is useful in testing because it generates the bit sequence 10101010, which is easy to see on a 

logic analyser  

We can check that the received data matches the sent data in a variety of ways: 

 if( read_data== 0xAA)  

         printf("data received correctly"); 

Finally we close the bus and the library: 

mraa_spi_stop(spi); 

return MRAA_SUCCESS; 

Putting all of this together gives us the complete program:  

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h>int main() { 

mraa_spi_context spi = mraa_spi_init(0);mraa_spi_mode(spi, MRAA_SPI_MODE0); 

mraa_spi_frequency(spi, 400000); 

mraa_spi_lsbmode(spi, 0); 

mraa_spi_bit_per_word(spi, 8); 

uint16_t read_data = mraa_spi_write(spi, 0xAA); 

if (read_data == 0xAA)  

             printf("data received correctly"); 

mraa_spi_stop(spi);return MRAA_SUCCESS; 

} 

If you run the program and don't get the "data received correctly" message then the most likely reason is that you 

have connected the wrong two pins together or not connected them at all.  

Some Edison SPI Problems 

If you connect a logic analyser to the four pins involved - J17-10,11 and 12 and J18-11 -  you will see the data 

transfer:  

  



  

If you look carefully you will see the CS0 line go low before the master places the first data bit on the MOSI and 

hence on the MISO lines. Notice that the clock rises in the middle of each data bit making this a mode 0 transfer. 

You can also see that the clock is measured to be 400KHz as promised. 

All as expected. However if you change the program to repeatedly send a single byte of data: 

for (;;) { 

uint16_t read_data = mraa_spi_write(spi, 0xAA); 

} 

you will see something you might not have expected: 

 

  

The clock rate may be specified as 400KHz, but the data rate is much slower. There is a .26ms delay between each 

byte transferred. This is not how SPI usually behaves. This is what Yocto Linux 3 does; before this the data rate 

was slowed down by the clock not starting for a long time after the CS line was active. The new behavior is much 

better and less likely to cause problems with SPI slaves.  

The delay effectively reduces the data rate to just less than 4.5K bytes/s from its theoretical upper limit of 50K 

bytes/s. 

What this means is that the data rate isn't as dependent on the clock speed as you might expect: 

1MHz       5K bytes/s 

400KHz   4.49K bytes/s 

200KHz  3.8K bytes/s 

100KHz  3.24K bytes/s 

50KHz    2.43K bytes/s 

10KHz    0.83K bytes/s  

The reason for this behavior is simply the overheads in calling the SPI functions to send a single byte.  

Earlier versions of Yocto Linux showed the same data transfer rates, but the slowdown was achieved by putting a 

delay in after the CS line had been activated.  



You might think that the way to get a higher data rate is to use one of the  buffer transfer functions which don't 

toggle the CS line between each byte or word and which run the clock continuously.  

However, if you try this with Yocto Linux 3 you will find that its behaviour is a little strange. 

For example, the program: 

for (i = 0; i < 1000; i++) 

 buf[i] = i; 

uint8_t recv[1000]; 

int n = 1000; 

mraa_result_t res=  

    mraa_spi_transfer_buf(spi,buf,recv,n); 

for (i = 0; i < n; i++) { 

 if (recv[i] != buf[i]) 

 printf("error %d , %d,%d \n", recv[i], buf[i], i); 

} 

transfers 1000 bytes containing 0,1,2,3,4 and so on and then compares the received data. 

You will find that you get error messages for all values after the first if the clock frequency is lower than about 

800KHz 

If you reduce the number of bytes sent to three or fewer then it does work.  

If you use a clock frequency of 800KHz to less than 1MHz then it works but the clock speed is less than set. 

At 1MHz it works correctly and the clock speed is 1MHz with occasional pauses giving a data transfer rate of 

around 0.125Mbytes/s 

At 2Mhz it is 0.26Mbytes/s , 10MHz gives 1.6Mbytes/s and at 25MHz the transfer rate is 3.12Mbytes/s. 

However you have to keep the buffer size to less than around 5Kbytes or there are over run errors.  

The latest version of the SPI driver has changed to make use of DMA data transfer - hence the much higher speeds 

achievable. If you select a clock speed lower than 1MHz then the DMA seems to get out of sync with the bus.   

The documentation also says: 

 In a single-frame transfer, the SoC supports all four possible combinations for the serial clock phase and 

polarity. 

 In multiple frame transfer, the SoC supports SPH=1 and SPO= 0 or 1. 

 The SoC may toggle the slave select signal between each data frame for SPH=0 

This means that multiple frame transfers only support Modes 1 and 3 and the CS line my be toggled between 

frames in modes 0 and 4.  

In practice this doesn't seem to happen.   

A User Mode Driver 

The SPI bus doesn't seem able to do data transfers with a clock much slower than 1MHz. This is good for fast 

devices such as video displays but some devices can't work this fast. There is also the problem of supporting more 

SPI devices than the Edison hardware supplies.  

We can solve some of these problems with a software emulation of the SPI bus.   



The good news is that the SPI protocol is very simple. We will implement a mode 0 transfer of a single byte. The 

code presented is very simple and you could improve it a lot at the cost of clarity and perhaps, if you are not 

careful, speed. 

The SPI protocol in mode 0 with CS active low and SCK active high is: 

1. Set CS1 to 0 wait a short time 

2. Put the data out on MOSI 

3. Wait 1 full delay 

4. Set SCK to 1  

5. Read MISO 

6. Wait 1 full delay 

7. Set SCK to 0 

8. Send all eight bits - repeat 2 to 7 - and then set CS1 to 1 again.  

You can see that we are setting the data just after the falling edge of the clock and reading the data just after the 

rising edge. 

Implementing The User Mode Driver 

In principle the two delays could be different to allow for a difference between a slaves setup and hold time. In 

practice we generally select a the longest delay. Notice that most SPI devices don't demand that the clock pulses 

are of the same length so we don't have to worry about being accurate.  

As long as you are using the latest version 3 of the IoT software you can make use of the same lines as the Edison's 

SPI bus to implement your own. Before version 3 you couldn't use all of the SPI bus lines as GPIO lines because 

they were used in the Linux Kernel. 

To get started first we need to define some global variables.  

mraa_gpio_context CS0; 

mraa_gpio_context SCK; 

mraa_gpio_context MOSI; 

mraa_gpio_context MISO; 

If you want to tidy things up these could be placed into a stuct and passed as a single parameter. You could then 

use the stuct to set up any four GPIO lines as an SPI bus.  

The function that we are going to create is: 

uint8_t sendbyte(uint8_t byte, int delay); 

it sends byte and returns the byte received. The delay parameter sets the clock frequency. 

We could have function to initialise the GPIO lines to work as an SPI bus but for the moment let's just put them in 

the main program: 

int main() { 

First we set up the program to run in a FIFO scheduling group. This should make it the only program to run until it 

gives up control, see Chapter 6 for more information. 

const struct sched_param priority = { 1 }; 

sched_setscheduler(0, SCHED_FIFO, &priority); 



Next we initlaize each of the SPI lines in turn:  

CS1 = mraa_gpio_init(9); 

mraa_gpio_dir(CS1, MRAA_GPIO_OUT); 

mraa_gpio_use_mmaped(CS1, 1); 

mraa_gpio_write(CS1, 1); 

SCK = mraa_gpio_init(10); 

mraa_gpio_dir(SCK, MRAA_GPIO_OUT); 

mraa_gpio_use_mmaped(SCK, 1); 

mraa_gpio_write(SCK, 0); 

MOSI = mraa_gpio_init(11); 

mraa_gpio_dir(MOSI, MRAA_GPIO_OUT); 

mraa_gpio_use_mmaped(MOSI, 1); 

mraa_gpio_write(MOSI, 0); 

MISO = mraa_gpio_init(24); 

mraa_gpio_use_mmaped(MISO, 1); 

mraa_gpio_dir(MISO, MRAA_GPIO_IN); 

mraa_gpio_read(MISO); 

The only thing that you might wonder about is the final read of the MISO line. Why bother? The answer is that the 

first read takes longer than subsequent reads because the pin is setup at this point. So a gratuitous read, throwing 

the result away, speeds up the first byte transfer. It is always a good idea to read an input line when you first set it 

up.  

Now we need to implement the function we can return to the main program in a moment. We need two loop 

variables and a byte variable to read the data in: 

uint8_t sendbyte(uint8_t byte, int delay) { 

int i, j; 

int read=0; 

Now we are all set to send eight bits one bit at a time. First we set the CS1 line low to select the slave, then we 

need a short pause to give the slave time, and then we can start the loop that sends each of the bits: 

mraa_gpio_write(CS1, 0); 

for (j = 1; j < 100; j++) { 

}; 

for (i = 0; i < 8; i++) { 

We need to set the data line high or low depending on the most significant bit in byte: 

mraa_gpio_write(MOSI, byte & 0x80); 

and then we need to shift the entire bit pattern one to the left to get the next bit into the most significant bit 

position: 

byte = byte << 1; 

Now we busy wait, and this is the only way to wait that doesn't return control to the operating system, for half a 

clock period and then set the clock high:  

for (j = 1; j < delay; j++) { 

}; 

mraa_gpio_write(SCK, 1); 



Next we need to read the data on MISO. This is the most significant bit and it needs to be shifted one place to the 

left to ensure it eventually gets to the correct position: 

read = read << 1; 

read = read | (mraa_gpio_read(MISO)); 

 Notice that the first shift doesn't actually do anything but its easier to put up with this waste than to waste even 

more time trying to test to eliminate it.  

Next we wait for another half a clock period and then set the clock low.  

for (j = 1; j < delay-10; j++) { 

}; 

mraa_gpio_write(SCK, 0);} 

This ends the loop that processes the eight bits and now all that remains is to deactivate the CS1 line and return the 

result. 

mraa_gpio_write(CS1, 1); 

for (j = 1; j < 20; j++) { 

}; 

return (uint8_t) read; 

} 

Continuing with the main program from where we left off, we can now make use of the function to send and 

receive some data: 

int delay = 0; 

uint8_t read; 

for(;;){ 

read = sendbyte(0xAA, delay); 

if(read!=0xAA)printf("Error \n"); 

} 

return MRAA_SUCCESS; 

} 

Assuming that the MISO and MOSI pins are connected together in a loop back, the output AA should equal the 

input AA.  

If you run this and measure the clock frequency you will find it is around 666KHz and the data rate is 66K 

bytes/s.  

This is the fastest data transfer things can be slowed down by setting other values to delay: 

Delay  Clock Transfer 

0     666KHz    66K bytes/s 

10   500KHz    62K bytes/s 

100 222KHz    26K bytes/s 

200 133KHz   16K bytes/s 

500   47KHz   7.2K bytes/s 

1000 31KHz   3.8K bytes/s 



Once you get to a delay of 500 or more you will discover that the delay after setting the CS1 line might not be 

enough. It really needs to be a percentage of the clock frequency. If you want to work down at these frequencies 

change the delay for CS1 to:  

for (j = 1; j < delay/8+100; j++) {} 

You can easily tidy up this function and program to produce something more like a library function. In addition 

you can modify it to create a buffer transfer function which works at similar speeds. An example of how to do this 

is given in the next chapter.  

Notice that while data is being transferred the function hogs one core of the Edison main CPU and the rest of your 

program makes no progress. However, if you replace the busy waits by other instructions you do have time to 

perform some light processing of the input data.   

The complete program is: 

#include "mraa.h" 

#include <stdio.h> 

#include <unistd.h> 

uint8_t sendbyte(uint8_t byte, int delay); 

mraa_gpio_context CS1; 

mraa_gpio_context SCK; 

mraa_gpio_context MOSI; 

mraa_gpio_context MISO; 

 

int main() { 

 const struct sched_param priority = { 1 }; 

 sched_setscheduler(0, SCHED_FIFO, &priority); 

 CS1 = mraa_gpio_init(9); 

 mraa_gpio_use_mmaped(CS1, 1); 

 mraa_gpio_dir(CS1, MRAA_GPIO_OUT); 

 mraa_gpio_write(CS1, 1); 

 SCK = mraa_gpio_init(10); 

 mraa_gpio_use_mmaped(SCK, 1); 

 mraa_gpio_dir(SCK, MRAA_GPIO_OUT); 

 mraa_gpio_write(SCK, 0); 

 MOSI = mraa_gpio_init(11); 

 mraa_gpio_use_mmaped(MOSI, 1); 

 mraa_gpio_dir(MOSI, MRAA_GPIO_OUT); 

 mraa_gpio_write(MOSI, 0); 

 MISO = mraa_gpio_init(24); 

 mraa_gpio_use_mmaped(MISO, 1); 

 mraa_gpio_dir(MISO, MRAA_GPIO_IN); 

 mraa_gpio_read(MISO); 

 int delay = 1000; 

 uint8_t read; 

 for (;;) { 

  read = sendbyte(0xAA, delay); 

  if (read != 0xAA) 

  printf("Error \n"); 

 } 

 return MRAA_SUCCESS; 



} 

uint8_t sendbyte(uint8_t byte, int delay) { 

 int i, j; 

 int read = 0; 

 mraa_gpio_write(CS1, 0); 

 for (j = 1; j < delay / 8 + 100; j++) { 

 }; 

 for (i = 0; i < 8; i++){ 

  mraa_gpio_write(MOSI, byte & 0x80); 

  byte = byte << 1; 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 1); 

  read = read << 1; 

  read = read | (mraa_gpio_read(MISO)); 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 0); 

 } 

 mraa_gpio_write(CS1, 1);  

 for (j = 1; j < delay / 8 + 20; j++) { }; 

 return (uint8_t) read; 

}General SPI Problems 

The SPI bus is often a real headache because of the lack of a definitive standard but in most cases you can make it 

work. The first problem is in discovering the characteristics of the slave device you want to work with. In general 

this is solved by a careful reading of the data sheet or perhaps some trial and error - see the next chapter for an 

example.  

If you are working with a single slave then generally things work once you have the SPI bus configuration set 

correctly. Where things are more difficult is if you have multiple devices on the same bus. The Pi can only directly 

support two devices but this is enough to make the task more difficult. Typically you will find SPI devices that 

don't switch off properly when they are not being addressed. In principle all SPI devices should present high 

impedance outputs (i.e. tristate buffers) when not being addressed but some don't. If you encounter a problem you 

need to check that the selected slave is able to control the MISO line properly.   

A better solution is to multiplex the CS0/1 lines to create additional chip selects. For example you can use standard 

GPIO lines as chip selects and connect more than two SPI slaves.  

Summary  

 The SPI bus is often problematic because there is no SPI standard. 

 Unlike other serial buses it makes use of unidirectional connections.  

 The data lines are MOSI master output slave input and MISO master input slave output. 

  

 In addition there is a clock line - output from master and an unspecified number of select lines - two in the 

case of the Edison. 



 Data is transferred from the master to the slave and from the slave to the master on each clock pulse in 

arranged as a circular buffer. 

 The mraa library provides all the functions you need to set up the SPI bus and transfer data one byte or 

multiple bytes at a time.  

 You can test the SPI bus using a simple loopback connection. 

 Working with a single slave is usually fairly easy, working with multiple slaves can be more of a problem. 

 In single byte transfers cannot achieve a high data rate because of the overheads involved in the mraa calls. 

In this case 5Kbytes/s is about as fast as you can achieve. 

 Multiple byte transfers can achieve higher data rates because the latest system software uses DMA but this 

only works with clock rates of 1MHz and higher. You can achieve data rates of 3Mbytes/s. 

 Multiple byte transfers are limited to blocks of around 5Kbytes. 

 You can achieve transfer rates of up to 65K byte/s using your own software implementation of the SPI 

protocol.  

 

 Exploring Edison - SPI AtoD with the SPI Bus 

The SPI bus can be difficult to make work at first, but once you know what to look for about how the slave claims 

to work it gets easier. To demonstrate how its done let's add eight channels of 12-bit AtoD using the MCP3008. 

The Edison with the mini-breakout board doesn't have any analog inputs or outputs. You could move up to the 

Arduino board but this is physically large and overkill.  A simpler solution is to interface an MCP3008 directly to 

the Edison's SPI bus. It is also a good example of working with the SPI bus.  

The MCP3000 family of AtoD converters provides a simple, cheap and low cost alternative to fitting an entire 

expansion board. Although the MCP3008 with 8 AtoD inputs and the MCP3004 with 4 AtoD inputs at 10-bit 

precision are the best known there are other devices in the family including 12- and 13-bit precision and 

differential inputs at around the same sort of cost, $1 to $2. 

In this chapter the MCP3008 is used because it is readily available and provides a good performance at low cost, 

but the other devices in the family work in the same way and could be easily substituted. 

The MCP3008 

The MCP3008 is available in a number of different packages, but the standard 16-pin PDIP is the easiest to work 

with using a prototyping board. You can buy it from the usual sources including Amazon if you need one in a 

hurry.  



Its pin outs are fairly self explanatory: 

 

You can see that the analog inputs are on the left and the power and SPI bus connections are on the right.  The 

conversion accuracy is claimed to be 10 bits but how many of these bits correspond to reality and how many are 

noise depends on how you design the layout of the circuit. 

You need to take great care if you need high accuracy. For example, you will notice that there are two voltage 

inputs, VDD and VREF. VDD is the supply voltage that runs the chip and VREF is the reference voltage that is 

used to compare the input voltage. Obviously if you want highest accuracy VREF, which has to be lower than or 

equal to VDD, should be set by an accurate low noise voltage source - however in most applications VREF and 

VDD are simply connected together and the usual, low quality supply voltage is used as the reference. If this isn't 

good enough then you can use anything from a zener diode to a precision voltage reference chip such as the 

TL431. At the very least however you should add a 1uF capacitor between the VDD pin and the VREF pin to 

ground.  

The MC3000 family is a type of AtoD called a successive approximation converter. You don't need to know how it 

works to use it, but it isn't difficult. The idea is that first a voltage is generated equal to VREF/2 and the input 

voltage is compared to this. If it is less, the most significant bit is a zero; and if it is more than or equal to it then it 

is a one. At the next step the voltage generated is VREF/2+VREF/4 and the comparison is repeated to generate the 

next bit.  

 

You can see that successive approximation fits in well with a serial bus as each bit can be obtained in the time 

needed to transmit the previous bit. However, the conversion is relatively slow and a sample and hold circuit has to 

be used to keep the input to the converter stage fixed. The sample and hold takes the form of a 20pF capacitor and 

a switch. 

The only reason you need to know about this is that the conversion has to be complete in a time that is short 

compared to the discharge time of the capacitor - so for accuracy there is a minimum SPI clock rate as well as a 

maximum.  



Also, to charge the capacitor quickly enough for it to follow a changing voltage, it needs to be connected to a low-

impedance source. In most cases this isn't a problem, but if it is you need to include an op amp. 

If you are using an op amp buffer then you might as well implement a filter to remove frequencies from the signal 

that are too fast for the AtoD to respond to - an anti-aliasing filter. How all this works takes us into the realm of 

analog electronics and signal processing and well out of the core subject matter of this book.  

You can also use the AtoD channels in pairs - differential mode - to measure the voltage difference between them. 

For example, in differential mode you measure the difference between CH0 and CH1, i.e. what you measure is 

CH1-CH0. In most cases you want to use all eight channels in single-ended mode.  

In principle, you can take 200K samples per second, but only at the upper limit of the supply voltage VDD=5V 

falling to 75K samples per second at its lower limit of  VDD=2.7V.  

The SPI clock limits are a maximum of 3.6MHz at 5V and 1.35MHz at 2.7V. The clock can go slower, but 

because of the problem with the sample and hold mentioned earlier it shouldn't go below 10kHz. 

How fast we can take samples is discussed later in this chapter. 

Connecting MCP3008 To The Edison 

The lower voltage operating point isn't quite low enough to allow it to work with the 1.8V Edison GPIO lines. 

There are 1.8V AtoD converters but they are more expensive and only available in surface mount packages. You 

can use an IC voltage translator and, given that there are four lines to convert, this may well be a good choice. 

However, the four lines are unidirectional - three output and one input to the Edison - and so simple transistor and 

resistor voltage translators suffice. 

One small problem is that a single-transistor common-emitter buffer inverts the signal. We could cope with this in 

software, but the SPI bus isn't easy to use in an inverted mode. However, if we used the user space driver given at 

the end of the previous chapter, then a simple inverting buffer could be used and corrected for in the software. 

To use the mraa SPI functions we need a non-inverting level translator and this is most simply achieved using the 

common base buffer introduced in the previous chapter and a simple resistor voltage divider.   

The connection to the Edison's SPI bus is simple and can be seen in the diagram below. 



 

If you want to understand the way the level converter works take a look a just one of the transistor circuits: 

  

 

  

When the SCLK is low the transistor is on because the voltage difference between the base and emitter is 1.8V. 

Hence the output SCLK line is pulled low via the 1K resistor. In this state the current in the Edison's GPIO line is 

roughly base current plus collector current: 

base current = (1.8-0.6)V/1K=1.2mA 

collector current 3.2V/2.2K=1.45mA 

or 2.65mA, which is below the 3mA the Edison can supply. You can increase the size of R4 but this reduces the 

high frequency performance. 

When the SCKL goes high the voltage applied to the base is below the emitter voltage and the transistor is cut off. 

This allows R4 to pull the output high. In this mode state the current supplied by the Edison is negligible.  



The only remaining component to explain is C4. This is a traditional "speed up" capacitor. Bipolar transistors take 

longer to switch off than switch on because of charge stored in the base region. The speed up capacitor provides 

charge to neutralize the base charge and so allows the transistor to switch off faster. A better alternative is to use a 

Schottky diode to stop the transistor going into deep saturation, but at the sort of speeds the Edison works at the 

capacitor is good enough.   

The only additional component that is recommended is a 1uF capacitor connected between pins 15 and 16 to 

ground, mounted as close to the chip as possible. As discussed in the previous section, you might want a separate 

voltage reference for pin 15 rather than just using the 3.3V supply.   

Basic Configuration 

Now we come to the configuration of the SPI bus. 

We have some rough figures for the SPI clock speed - 10kHz to  a little more than 1.35MHz. So an initial clock 

frequency giving a frequency of 1MHz seems a reasonable starting point. This also means that the clock is in the 

region where the DMA transfer works correctly. However as we are only transferring three bytes the DMA works 

at lower frequencies. 

From the data sheet the CS has to be active low and the most significant bit first is the default for both the master 

and the slave. 

The only puzzle is what mode to use? 

This is listed in the data sheet if you look really carefully. It can be mode 0,0 with clock active high or mode 1,1 

with clock active low.  

For simplicity we can use mode 0,0 which is mode0 in the bcm2835 library. 

We now have enough information to initialize for the slave: 

mraa_spi_context spi = mraa_spi_init(0); 

mraa_spi_mode(spi, MRAA_SPI_MODE0 ); 

mraa_spi_frequency(spi,1000000); 

mraa_spi_lsbmode(spi, 0); 

mraa_spi_bit_per_word(spi,8); 

The Protocol 

Now we have the SPI initialized and ready to transfer data but what data do we transfer? 

The SPI bus doesn't have any standard commands or addressing structure. Each device responds to data sent in 

different ways and sends data back in different ways. You simply have to read the data sheet to find out what the 

commands and responses are.  

Reading the data sheet might be initially confusing because it says that what you have to do is send five bits to the 

slave - a start bit, a bit that selects its operating mode single or differential and a three bit channel number. The 

operating mode is 1 for single ended and 0 for differential. So to read channel 3 i.e. 011, in single ended mode you 

would send the slave: 



11011xxx 

where xxx means don't care. The response from the slave is that it holds its output in a high impedance state until 

the sixth clock pulse it then sends a zero bit on the seventh followed by bit 9 of the data on clock eight.  That is the 

slave sends back: 

xxxxxx0 b9 

where x means indeterminate and b9 is zero or one depending on the data. The remaining nine bits are sent back in 

response to the next nine clock pulses. This means you have to transfer three bytes to get all ten bits of data.  

This all makes reading the data in eight-bit chunks confusing.  

The data sheet suggests a different way of doing the job that delivers the data more neatly packed into three bytes. 

What it suggests is to send a single byte  

00000001 

The slave transfers random data at the same time which is ignored. The final 1 is treated as the start bit. If you now 

transfer a second byte with most significant bit indicating single or differential mode, then a three-bit channel 

address and the remaining bits set to zero, the slave will respond with the null and the top two bits of the 

conversion. Now all you have to do to get the final eight bits of data is to read a third byte: 

 

You can do it the first way that the data sheet describes, but this way you get two neat bytes containing the data 

with all the low-order bits in their correct positions.  

Using this information we can now write some instructions that read a given channel. For example, to read channel 

zero we first send a byte set to 0x01 as the start bit and ignore the byte the slave transfers. Next we send 0x80 to 

select single-ended and channel zero and keep the byte the slave sends back as the high-order two bits. Finally we 

send a zero byte so that we get the low-order bits from the slave: 

uint8_t buf[] = {0x01,0x80,0x00};  

uint8_t readBuf[3];  

mraa_spi_transfer_buf (spi, buf, readBuf,3); 

Notice you cannot send the three bytes one at a time using transfer because that results in the CS line being 

deactivated between the transfer of each byte.  

To get the data out of readBuf we need to do some bit manipulation: 

int data=((int)readBuf[1] & 0x03)<< 8|(int)readBuf[2]; 

The first part of the expression extracts the low three bits from the first byte the slave sent and as these are the 

most significant bits they are shifted up eight places. The rest of the bits are then ORed with them to give the full 

10-bit result.  

To convert to volts we use: 



float volts=(float)data*3.3f/1023.0f; 

assuming that VREF is 3.3V.   

In a real application you would also need to convert the voltage to some other quantity such as temperature or light 

level.  

Some Packaged Functions 

This all works but it would be good to have a function that read the AtoD on a specified channel:  

int readADC( mraa_spi_context spi,uint8_t chan){ 

uint8_t buf[] = {0x01,(0x08|chan)<<4,0x00}; 

uint8_t readBuf[3]; 

mraa_spi_transfer_buf (spi, buf, readBuf,3); 

return ((int)readBuf[1] & 0x03) << 8 | (int) readBuf[2]; 

} 

Notice that this only works if the SPI bus has been initilized and set up correctly. An initalization function is 

something like: 

mraa_spi_context initADC(int freq){ 

mraa_spi_context spi = mraa_spi_init(0);mraa_spi_mode(spi, MRAA_SPI_MODE0 ); 

mraa_spi_frequency(spi,freq); 

mraa_spi_lsbmode(spi, 0); 

mraa_spi_bit_per_word(spi,8); 

return spi; 

} 

And these could be used something like: 

mraa_spi_context spi=initADC(1000000); 

int data; 

 

data =readADC(spi,0); 

printf("Data %d \n",data); 

float volts=((float)data)*3.3f/1023.0f; 

printf("volts= %f \n",volts); 

mraa_spi_stop(spi); 

How Fast 

Once you have the basic facilities working the next question is always how fast does something work. In this case 

we need to know what sort or data rates we can achieve using this AtoD converter.  

The simplest way fo finding this out is to use the fastest read loop: 

for(;;){ 

int data=readADC(0x5); 

} 

With a set clock frequency of 60KHz we get a measured clock rate of 60.1kHz the sampling rate is measured to be 

1.6K sample/s which is less than the theoretical upper limit of  2.5K samples/s for 24 bits ignoring any dead time 

between readings.  



If you up the clock rate to 100KHz you will find that while the clock rate does go up to 100KHz the sample rate is 

only 2.3K samples/s compared to the theoretical upper limit of 4.16K samples/s. 

It doesn't matter how fast you attempt to push the clock rate, even to 1MHz you can't do better than about 5K 

samples/s which is a fundamental bottle neck set by the software. 

 

  

Notice that it isn't possible to increase the speed by putting multiple reads into a single transfer because the 

MCP3008 simply sends zeros after the third byte if the master keeps the clock running. That is you can't use 

something like: 

uint8_t buf[] = {0x01,0x80,0x00,0x01,0x80,0x00}; 

uint8_t readBuf[6];  

mraa_spi_transfer_buf (spi, buf, readBuf,6); 

To get two readings from the device and so avoid the delays between each group of three bytes.  

Using Software SPI Emulation 

One way of getting a higher sampling rate is to use the software emulation introduced at the end of the previous 

chapter. We could write a general n byte transfer function but as this is specifically aimed at reading the MCP3008 

it makes more sense to write a function that transfers three bytes and reads the ADC returning the assembled value. 

First we need to add the global variables specifying the GPIO lines to use: 

mraa_gpio_context CS1; 

mraa_gpio_context SCK; 

mraa_gpio_context MOSI; 

mraa_gpio_context MISO; 

Next we need an initialization function and this is just the initialization code in the last chapter packaged into a 

function:  

void initSPIsoft() { 

CS1 = mraa_gpio_init(9); 

mraa_gpio_dir(CS1, MRAA_GPIO_OUT); 

mraa_gpio_use_mmaped(CS1, 1); 

mraa_gpio_write(CS1, 1); 

 

SCK = mraa_gpio_init(10); 

mraa_gpio_dir(SCK, MRAA_GPIO_OUT); 

mraa_gpio_use_mmaped(SCK, 1); 

mraa_gpio_write(SCK, 0); 



 

MOSI = mraa_gpio_init(11); 

mraa_gpio_dir(MOSI, MRAA_GPIO_OUT); 

mraa_gpio_use_mmaped(MOSI, 1); 

mraa_gpio_write(MOSI, 0);MISO = mraa_gpio_init(24); 

mraa_gpio_use_mmaped(MISO, 1); 

mraa_gpio_dir(MISO, MRAA_GPIO_IN); 

The read function is essentially the byte transfer function given at the end of the previous chapter but reading three 

bytes and only changing the CS1 line once a the start and end. The function starts off with some initialization and 

then it activates the CS1 line:  

int readADCsoft(uint8_t chan, int delay) { 

 int i, j; 

 int read; 

 int result; 

 uint8_t byte; 

 read = 0; 

 mraa_gpio_write(CS1, 0); 

 for (j = 1; j < 100; j++) { 

 }; 

The first byte transfer is: 

 byte = 0x01; 

 for (i = 0; i < 8; i++) { 

  mraa_gpio_write(MOSI, byte & 0x80); 

  byte = byte << 1; 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 1); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  read = read << 1; 

  read = read | (mraa_gpio_read(MISO)); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  mraa_gpio_write(SCK, 0); 

 } 

  

Notice we are not interested in what the ADC sends back to us so we can simply ignore the value in read.  

The second byte starts the data transfer and selects the ADC channel: 

 byte = (0x08 | chan) << 4; 

 for (i = 0; i < 8; i++) { 

  mraa_gpio_write(MOSI, byte & 0x80); 

  byte = byte << 1; 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 1); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  read = read << 1; 

  read = read | (mraa_gpio_read(MISO)); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  mraa_gpio_write(SCK, 0); 

 } 

 result = (int) read & 0x03 << 8; 



Notice that this time we collect the bottom two bits of the byte that the ADC sent and store them in result as the 

most significant bits. 

The final byte is the lower eight bits of the result: 

 byte = 0; 

 for (i = 0; i < 8; i++) { 

  mraa_gpio_write(MOSI, byte & 0x80); 

  byte = byte << 1; 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 1); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  read = read << 1; 

  read = read | (mraa_gpio_read(MISO)); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  mraa_gpio_write(SCK, 0); 

 } 

Now all we have to do is deactivate the CS1 line and return the result: 

 mraa_gpio_write(CS0, 1); 

 for (j = 1; j < 10; j++) { 

 }; 

 return result | read; 

} 

  

If you try this out with: 

int data; 

initSPIsoft(); 

for (;;) { 

 data = readADCsoft(0, 0); 

} 

you will discover that the clock rate is roughly 666KHz and the sample rate is roughly 24K samples per second. 

You can use lower sampling rates by setting a delay greater than zero.  

As before, notice that this tight sampling loop means that all other processes are locked out of running on the core 

that your program is running on.  

If you need to go faster than this, the only alternative at the moment is to use some external SPI hardware.   

Summary 

 Making SPI work with any particular device has four steps: 

1.  

1. Discover how to connect the device to the SPI. 

This is a matter of identifying pinouts and mostly what chip selects are supported. 

2. Find out how to configure the SPI bus to work with the device. This is mostly a matter of clock 

speed and mode.  



3. Identify the commands that you need to send to the device to get it to do something and what data it 

sends back as a response. 

4. Find, or workout, what the relationship between the raw reading, the voltage and the quantity the 

voltage represents is.  

 The Edison has some problems running the SPI bus at high data rates if you cannot group the transaction 

into a larger block transfer. For the MCP3008 this isn't possible.   

 Using mraa the fastest data sampling rate from the MCP3008 is 5K samples per second. 

 Using a software simulated SPI bus you can achieve rates of just less than 25K samples per secon 

The complete soft SPI program including the mraa ADC reading function  is: 

#include <stdio.h> 

#include <stdlib.h> 

#include "mraa.h" 

#include <unistd.h> 

 

int readADC(mraa_spi_context spi, uint8_t chan); 

mraa_spi_context initADC(int freq); 

int readADCsoft(uint8_t chan, int delay); 

void initSPIsoft(); 

mraa_gpio_context CS1; 

mraa_gpio_context SCK; 

mraa_gpio_context MOSI; 

mraa_gpio_context MISO; 

int main() { 

 const struct sched_param priority = { 1 }; 

 sched_setscheduler(0, SCHED_FIFO, &priority); 

 // mraa_spi_context spi=initADC(1000000); 

 int data; 

 initSPIsoft(); 

 for (;;) { 

  // data =readADC(spi,0); 

  data = readADCsoft(0, 0); 

 } 

 printf("Data %d \n", data); 

 float volts = ((float) data) * 3.3f / 1023.0f; 

 printf("volts= %f \n", volts); 

 // mraa_spi_stop(spi); 

 return 0; 

} 

int readADC(mraa_spi_context spi, uint8_t chan) { 

 uint8_t buf[] = {0x01, 

       (0x08 | chan) << 4, 0x00}; 

 uint8_t readBuf[3]; 

 mraa_spi_transfer_buf(spi, buf, readBuf, 3); 

 return ((int) readBuf[1] & 0x03) << 8 |  

                             (int) readBuf[2]; 

}  

mraa_spi_context initADC(int freq) { 

 mraa_spi_context spi =  

 mraa_spi_init(0);mraa_spi_mode(spi, MRAA_SPI_MODE0); 



 mraa_spi_frequency(spi, freq); 

 mraa_spi_lsbmode(spi, 0); 

 mraa_spi_bit_per_word(spi, 8); 

 return spi; 

}  

int readADCsoft(uint8_t chan, int delay) { 

 int i, j; 

 int read; 

 int result; 

 uint8_t byte; 

 read = 0; 

 mraa_gpio_write(CS1, 0); 

 for (j = 1; j < 100; j++) { 

 }; 

 byte = 0x01; 

 for (i = 0; i < 8; i++) { 

  mraa_gpio_write(MOSI, byte & 0x80); 

  byte = byte << 1; 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 1); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  read = read << 1; 

  read = read | (mraa_gpio_read(MISO)); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  mraa_gpio_write(SCK, 0); 

 } 

 byte = (0x08 | chan) << 4; 

 for (i = 0; i < 8; i++) { 

  mraa_gpio_write(MOSI, byte & 0x80); 

  byte = byte << 1; 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 1); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  read = read << 1; 

  read = read | (mraa_gpio_read(MISO)); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  mraa_gpio_write(SCK, 0); 

 } 

 result = (int) read & 0x03 << 8; 

 byte = 0; 

 for (i = 0; i < 8; i++) { 

  mraa_gpio_write(MOSI, byte & 0x80); 

  byte = byte << 1; 

  for (j = 1; j < delay; j++) { 

  }; 

  mraa_gpio_write(SCK, 1); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  read = read << 1; 

  read = read | (mraa_gpio_read(MISO)); 

  for (j = 1; j < delay / 2; j++) { 

  }; 

  mraa_gpio_write(SCK, 0); 

 } 

 mraa_gpio_write(CS0, 1); 

 for (j = 1; j < 10; j++) { 



 }; 

 return result | read; 

} 

  

void initSPIsoft() { 

 CS1 = mraa_gpio_init(9); 

 mraa_gpio_dir(CS1, MRAA_GPIO_OUT); 

 mraa_gpio_use_mmaped(CS1, 1); 

 mraa_gpio_write(CS1, 1); 

  

 SCK = mraa_gpio_init(10); 

 mraa_gpio_dir(SCK, MRAA_GPIO_OUT); 

 mraa_gpio_use_mmaped(SCK, 1); 

 mraa_gpio_write(SCK, 0); 

  

 MOSI = mraa_gpio_init(11); 

 mraa_gpio_dir(MOSI, MRAA_GPIO_OUT); 

 mraa_gpio_use_mmaped(MOSI, 1); 

 mraa_gpio_write(MOSI, 0); 

  

 MISO = mraa_gpio_init(24); 

 mraa_gpio_use_mmaped(MISO, 1); 

 mraa_gpio_dir(MISO, MRAA_GPIO_IN); 

} 

Exploring Edison - Beyond mraa 
There is a Linux-based approach to working with GPIO lines and serial buses that is worth knowing about because it 
provides an alternative to using the mraa library. Sometimes you need this because you are working in a language for which 
mraa isn't available. It also lets you access features that mraa doesn't make available.  

A key principle of Linux is that everything is a file or a folder. As much as is possible Linux deals with external 

hardware by treating it as if it was a file system. This is reasonable because external hardware either wants to 

receive data as commands or something to store or display or it want to send data as responses or user input. So 

most hardware interacts with Linux as a source or a sink of data and this is exactly what a file is all about.  

This "everything is a file" approach only really fails when issues of performance enter the picture. Accessing a 

piece of hardware as if it was a file when it isn't can be slow. In normal use mraa accesses most of the hardware of 

the Edison using file commands, but when you use fast memory access it maps the hardware into user space and 

accesses it as a range of memory locations.  

So file-based access to the hardware can be slow, but it has the huge advantage that it is language-independent. 

Every language has the facilities needed to open, read/write and close a file and so has the facilities needed to work 

with hardware via the file system 

The big problem is that the details of how hardware is represented as a file system is poorly documented and you 

have to find out about it by guessing, trial and error, reverse engineering, or by reading code the makes use of it.  

Working with Sysfs 

Sysfs is a virtual file system that provides all sorts of access to hardware and the operation of the Linux kernel. 

You can spend a lot of time exploring Sysfs, but the only part we are particularly interested in is the gpio folder. 

Sysfs is usually mounted in the sys folder and the folder that corresponds to the gpio device is usually: 

/sys/class/gpio 

To see what is in the folder, simply list it: 



ls /sys/class/gpio 

 

  

These are the gpio lines that are already in use by some process or other. Notice that the gpio numbers are not mraa 

numbers, but SYSFS numbers.  

The steps in using a line are always the same: 

 Reserve or "export" the gpio line so that no other process can use it 

 Set its direction and read or write it 

 Unreserve it or unexport it  

You can do these steps from any language that supports file operations including the shell.  

To reserve a gpio line you have to write its number to the export folder and you can do this using the shell 

command. For example, assuming we want to work with gpio-44: 

echo 44 > /sys/class/gpio/export 

You can of course change 44 to any valid gpio number. 

You can do the same job in C: 

gpio=44; 

fd = open("/sys/class/gpio/export", O_WRONLY); 

sprintf(buf, "%d", gpio); 

write(fd, buf, strlen(buf)); 

close(fd); 

If you are not familiar with C file operations - the open function opens export for write only, the sprintf 

command creates a string with the number of the gpio line and then this is written to the file before it is closed.  

Once you have the pin reserved you will see a new folder gpio44 corresponding to it in /sys/class/gpio. 

Now that you have it reserved, you can set its direction and read or write it. To do this read or write to the 

appropriate sub folder of the new gpio folder, direction or value. 

For example, to read the line use: 

echo "in" > /sys/class/gpio/gpio44/direction 

cat /sys/class/gpio/gpio44/value 

and to set the line high and then low: 

echo "out" > /sys/class/gpio/gpio44/direction 

echo 1 > /sys/class/gpio/gpio44/value 

 echo 0 > /sys/class/gpio/gpio4/value 

You can do the same things using C but it is slightly more verbose due to the need to open and close files and build 

the appropriate strings.  



Example - toggling a line 

As an example consider the following C program which sets gpio-44 to output and then toggles it high and low as 

fast as possible:  

#include <stdio.h> 

#include <stdlib.h> 

#include "mraa.h" 

int main() { 

int fd; 

char buf[100]; 

int gpio = 44; 

fd = open("/sys/class/gpio/export", O_WRONLY); 

sprintf(buf, "%d", gpio); 

write(fd, buf, strlen(buf)); 

close(fd); 

sprintf(buf, "/sys/class/gpio/gpio%d/direction", gpio); 

fd = open(buf, O_WRONLY); 

write(fd, "out", 3); 

close(fd); 

sprintf(buf, "/sys/class/gpio/gpio%d/value", gpio); 

fd = open(buf, O_WRONLY); 

for(;;){ 

write(fd, "1", 1); 

write(fd, "0", 1); 

} 

close(fd); 

fd = open("/sys/class/gpio/unexport", O_WRONLY); 

sprintf(buf, "%d", gpio); 

write(fd, buf, strlen(buf)); 

close(fd);  

  

return 0; 

} 

  

Notice the "clever" use of sprintf to create strings which incorporate the number of the gpio line you are using.  

It you try this this out you will discover that the pulse train has a frequency of 50KHz and a pulse width of 10 

microseconds. Which is comparable to mraa in non-memory-mapped mode. 

  

 

  



So there is little to be gained from using Sysfs in this way - it is more a matter of knowing it is there. 

It is worth knowing that if you plan to read a gpio line using this technique after the first read you need to position 

the file pointer back to the start of the file to read subsequent values: 

lseek(fp, 0, SEEK_SET); 

Controlling the GPIO Mode 

In principle you should be able to set the output mode of the GPIO lines using mraa but at the moment you can't 

and mraa wound not support the full range of possibilities even if it did work. There should be additional folders in 

the sys/class/gpio directories that allow you to control the configuration of the gpio line - pullup, pulldown 

etc. but these aren't present.  

Instead there are directories in sys/kernel/debug/ that do the same job. Why they are in the debugfs is not 

clear as they are generally useful and not particularly to do with debugging. The debugfs is usually not enabled in 

Linux and you have to recompile the kernel to enable it, but it is enabled in the standard distribution of the Edison 

firmware. 

If you get a list of all the folders in sys/kernel/debug/gpio_debug you will see that there is a folder for 

each gpio line. If you list all the folders in one of these, for example: 

ls /sys/kernel/debug/gpio_debug/gpio44 

you will see a the following list of folders that relate to the configuration of the pin:  

current_debounce 

available_debounce 

current_direction 

available_direction  

current_irqtype 

available_irqtype  

current_opendrain 

available_opendrain  

current_override_indir 

available_override_indir  

current_override_inval 

available_override_inval  

current_override_outdir 

available_override_outdir  

current_override_outval 

available_override_outval  

current_pinmux 

available_pinmux  

current_pullmode 

available_pullmode  

current_pullstrength 

available_pullstrength  

current_standby_indir 

available_standby_indir  

current_standby_inval 

available_standby_inval  

current_standby_opendrain 

available_standby_opendrain  

current_standby_outdir 

available_standby_outdir  

current_standby_outval 

available_standby_outval  

current_standby_pullmode 

available_standby_pullmode  



current_standby_trigger 

available_standby_trigger  

current_value 

available_value irq_count 

conf_reg register_info 

You can see that they are mostly in current and available pairs. The contents in current give you the 

value already in set and those in available give you the possible values you can set.  

Three of the files relate to the mode of operation of the pin: 

available_pullmode nopull pullup pulldown 

available_pullstrength 2k 20k 50k 910ohms 

available_opendrain disable enable 

The current values of these are pullup  50k and disable. 

You might at this point think that this means that the default gpio pin configuration is 50K pullup but it isn't. The 

fact that open_drain is disabled sets the pin into pushpull output mode and the pullup and 50k are ignored.  

If you want to experiment setting the output modes then you can use cat and echo at the command line, but you 

need to know that if you make use of the Sysfs system to change the state of the gpio line then the mode is set back 

to pushpull automatically. This is presumably why mraa's mode setting function seems not to work.  

It isn't difficult to write some functions that let you set the output mode of a pin. 

The Output Modes 

Before we get to the code to do the job it is worth spending a moment explaining the three basic output modes. 

In pushpull mode two transistors of opposite polarity are used, for example: 

  

 

  

The circuit behaves like the two-switch equivalent shown on the right. Only one of the transistors, or switches is 

"closed" at any time. If the input is high then Q1 is saturated and the output is connected to ground - exactly as if 

S1 was closed. If the input is low then Q2 is saturated and it is as if S2 was closed and the output is connected to 

1.8V. 



You can see that this pushes the output line high with the same "force" as it pulls it low. The Edison can source or 

sink up to 2mA.  

The pullup mode replaces one of the transistors by a resistor: 

 

In this case the circuit is equivalent to having a single switch. When the switch is closed the output line is 

connected to ground and hence driven low. When the switch is open the output line is pulled high by the resistor.  

You can see that in this case the degree of pulldown is greater than the pullup, where the current is limited by the 

resistor. The advantage of this mode is that it can be used in an AND configuration. If multiple gpio or other lines 

are connected to the output, then any one of them being low will pull the output line low. Only when all of them 

are off does the resistor succeed in pulling the line high. This is used, for example, in a serial bus configuration 

like the I2C bus.  

Finally the pulldown mode is exactly the same as the pullup only now the resistor is used to pull the output line 

low: 

 

In the case of the pulldown mode the line is held high by the transistor but pulled low by the resistor only when all 

the switches are open. Putting this the other way round - the line is high if any one switch is closed.  

Generally speaking the pushpull mode is best for driving general loads, motors, LEDs, etc. The pullup/down 

modes are used where you need to create a serial bus of some sort or when the load needs this sort of drive.  

Setting the Mode 

We can use the  sys/kernel/debug/gpio_debug file system to set the mode. First we need some general function 

that read and write to the file system. 

First we need a function that will read the current property of any pin:  



void getSetting(int pin,char prop[],char* buf){ 
 sprintf(buf, "/sys/kernel/debug/gpio_debug/ 

                  gpio%d/current_%s",pin,prop); 
 int fd = open(buf, O_RDONLY); 

 int count=read(fd, buf, 10); 
 buf[count]=0; 
 close(fd); 
} 

Notice that the property is specified by prop[] and the result returned in buf[]. 

  

Similarly we need a function that will write a new value to any current property for the specified pin: 

void putSetting(int pin,char prop[], 

                                char value[]){ 
 char buf[200]; 

 sprintf(buf, "/sys/kernel/debug/gpio_debug/ 

                   gpio%d/current_%s",pin,prop); 
 int fd = open(buf, O_WRONLY); 
 write(fd, value, strlen(value)); 

 close(fd); 
} 

Using the getSetting function it is now easy to write a function that will print the current mode status to the 

console; 

void getMode(int pin){ 
 char buf[200]; 

 getSetting(pin,"pullmode",buf); 
 printf("pullmode= %s \n",buf); 

 getSetting(pin,"pullstrength",buf); 
 printf("pullstrength= %s \n",buf); 

 getSetting(pin,"opendrain",buf); 
 printf("opendrain= %s \n",buf); 

} 

This is useful when you are debugging to see what mode is set and to make sure that mraa isn't changing it while 

you are not looking.  

The problem is that if you use mraa to set a pin to high or low then the use of Sysfs will reset the mode. The 

solution to this problem is to use memory mapped access which mraa supports and doesn't use Sysfs.  

For example: 

int gpio = 44; 

 
mraa_gpio_context pin = mraa_gpio_init(31); 
mraa_gpio_dir(pin, MRAA_GPIO_OUT); 
mraa_gpio_use_mmaped(pin, 1); 



putSetting(gpio,"pullmode","pullup"); 
putSetting(gpio,"pullstrength","50k"); 
putSetting(gpio,"opendrain","enable"); 
getMode(gpio); 

mraa_gpio_write(pin, 1); 
mraa_gpio_write(pin, 0); 
getMode(gpio); 

  

Recall that GPIO-44 is the same as mraa pin 31 so we are working with the same pin in all of the code. First we set 

the pin to output and memory mapped access using mraa functions. Next we set the output mode to 50K pullup 

and enable the opendrain mode. You can see from the output that the pin is written to and the set mode doesn't 

change. If you change use_mmaped to  

 mraa_gpio_use_mmaped(pin, 1); 

then you will find that the mode changes between setting the pin high and low.  

You can check that the mode really has changed by connecting a multimeter to the pin and measuring its voltage. 

In pushpull mode, i.e. with  

putSetting(gpio,"opendrain","disable"); 

the output voltage will be a little over 1.8V, but with it enabled it drops to just over 1.7V. You can also put a 10K 

resistor from the pin to ground and you will discover that the voltage drops to around 2.7, which is correct for a 

voltage divider consisting of a 50K pullup and a 10K load resistor. 

All of the pullstrength resistors, work but something strange happens if you specify 910ohms - the output voltage 

drops. 

You can also try making pulldown work - it doesn't seem to. However, setting pullmode to nopull gives you the 

open drain output line without a pullup resistor. This allows you to add an external pull up resistor of your own 

choice between the output line and the 1.8V line. 

To summarize: 

You can work with two modes: 

 If current_opendrain is set to disable then you have a pushpull output stage - this is the default for all 

output pins. 

 if  current_opendrain is set to enable then you can set pullmode to pullup with built in resistors of 50K, 

20K and 2K or you can set pullup pullmode to nopull and use your own external pull up resistors.  

There may well be other things that are useful in Sysfs and in /sys/kernel/debug/gpio_debug/gpio, but there is 

currently no documentation for it.  

 


